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Preface
Preface

This manual is written for Tensilica customers who are experienced in working with mi-
croprocessors or in writing assembly code or compilers. It is NOT a specification for one 
particular implementation of the Architecture, but rather a reference for the ongoing 
Instruction Set Architecture. For a detailed specification for specific products, refer to a 
specific Tensilica processor data book.

Notation
italic_name indicates a program or file name, document title, or term being defined.
$ represents your shell prompt, in user-session examples.
literal_input indicates literal command-line input.
variable indicates a user parameter.
literal_keyword (in text paragraphs) indicates a literal command keyword.
literal_output indicates literal program output. 
... output ... indicates unspecified program output. 
[optional-variable] indicates an optional parameter.
[variable] indicates a parameter within literal square-braces. 
{variable} indicates a parameter within literal curly-braces. 
(variable) indicates a parameter within literal parentheses. 
| means OR.
(var1 | var2) indicates a required choice between one of multiple parameters.
[var1 | var2] indicates an optional choice between one of multiple parameters.
var1 [, varn]* indicates a list of 1 or more parameters (0 or more repetitions).
4'b0010 is a 4-bit value specified in binary.
12'o7016 is a 12-bit value specified in octal.
10'd4839 is a 10-bit value specified in decimal.
32'hff2a or 32'HFF2A is a 32-bit value specified in hexadecimal. 

Terms
0x at the beginning of a value indicates a hexadecimal value.
b means bit.
B means byte.
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flush is deprecated due to potential ambiguity (it may mean write-back or discard).
Mb means megabit.
MB means megabyte.
PC means program counter.
word means 4 bytes. 
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Changes from the Previous Version
Changes from the Previous Version

The following changes have been made to this document for the Tensilica RC-2010.1 
release:

Deleted several extraneous blank pages in between each chapter in previous re-
lease.
Corrected erroneous cross-references to Table 4–55 through Table 4–58 in 
Section 4.4.1.1 on page 83
Clarified information about lookup rings in Section 4.6.2.2 and Section 4.6.2.3.

The following changes have been made to this document for the Tensilica RC-2009.0 
release:

A new register, ATOMCL, has been added to Section 4.3.13 “Conditional Store Op-
tion” on page 91. The ATOMCTL register controls the interaction of the S32C1I in-
struction with the memory system.
The description of attributes for the Section 4.6.3 “Region Protection Option” on 
page 187 and the Section 4.6.5.10 “MMU Option Memory Attributes” on page 213 
have been improved. There are no actual changes to the attributes.
The Section 4.6.5 “MMU Option” on page 196 has gained a new option. Way5 and 
Way6 can now be either variable or fixed. The variable version provides more flexi-
bility in the address map and has a setting where the MMU puts out a physical ad-
dress equal to the virtual address and is, in that sense, turned off.
Many of the SYNC instruction requirements listed in Section 5.3 “Special Registers” 
on page 259 have not actually been needed after T1050. Those requirements have 
now been removed from Section 5.3 but retained in Appendix A.
The RER and WER instructions have been added to Chapter 6.
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Chapter 1. Introduction
1. Introduction

This chapter provides an overview of Tensilica, the Xtensa Instruction Set Architecture 
(ISA), and the Xtensa Processor Generator. 

1.1 What Problem is Tensilica Solving?

Processors have traditionally been extremely difficult to design and modify. Therefore, 
most systems contain rigid processors that were designed and verified once for general-
purpose use and then embedded into multiple applications over time. Because these 
processors are general-purpose designs, their suitability to any particular application is 
less than ideal. Although it would be preferable to have a processor specifically de-
signed to execute a particular application’s code better (for example, to run faster, or 
consume less power, or cost less), this is rarely possible because of the difficulty; the 
time, cost, and risk of modifying an existing processor or developing a new processor is 
very high.

It is also not appropriate to simply design traditional processors with more features to 
cover all applications, because any given application only requires a particular set of 
features — a processor with features not required by the application is overly costly and 
consumes unnecessary power. It is also not possible to know all of the potential applica-
tion targets when a processor is initially designed. 

If processor configuration could be automated and made reliable, then system designers 
would have the option and ability to create truly efficient application solutions. 

This is just what Tensilica is about: Tensilica provides a set of techniques and tools for 
designing an application solution that contains one or more processors, each one con-
figured and enhanced at design-time to fine-tune its suitability for a specific application. 
Fine-tuning an architecture can consist of any combination of:

Extensibility: Adding architectural enhancements.
Configurability: Creating custom processor configurations.
Retargetability: Mapping the architecture into hardware to meet different speed, ar-
ea, and power targets in different processes.

1.1.1 Adding Architectural Enhancements

As an example of an architectural enhancement, consider a device designed to transmit 
and receive data over a channel using a complex protocol. Because the protocol is com-
plex, the processing cannot be reasonably accomplished entirely in hard logic, and in-
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stead a programmable processor is introduced into the system for protocol processing. 
This processor’s programmability also allows bug fixes and upgrades to later protocols 
to be done by loading the instruction memories with new software. However, the proces-
sor was probably not designed for this particular application (the application may not 
have even existed when the processor was designed), and the application may perform 
operations that require many instructions — operations that could be accomplished with 
a trivial amount of additional processor logic.

Before the introduction of Tensilica’s Xtensa technology, processors could not be 
enhanced easily. Because of this, many system designers are forced to solve problems 
by executing the inefficient pure-software solution on the available general-purpose 
processor. This results in a solution that may be slower, or higher power, or costlier than 
necessary (for example, it may require a larger, more powerful processor to execute the 
program at sufficient speed). 

Other designers choose to provide some of the processing requirements in special-
purpose hardware that they design for the application. This approach requires special 
code to access the custom hardware at various points in the program. However, the time 
to transfer data between the processor and the custom hardware limits the utility of this 
approach to fairly large units of work; small computations cannot sufficiently amortize 
the communication overhead introduced by this approach to provide a reasonable 
speed-up. 

In the communication-channel application example, the protocol might require encryp-
tion, error-correction, or compression/decompression processing. Such processing 
often operates on individual bits rather than a processor’s larger words. The circuitry for 
a computation may be rather modest, but the need for the processor to extract each bit, 
sequentially process it, and then repack the bits adds considerable overhead.

As a specific example, consider the Huffman decode shown in Table 1–1.

Table 1–1.  Huffman Decode Example 
Input Value Length

00xxxxxx  0 2
01xxxxxx  1 2
10xxxxxx  2 2
110xxxxx  3 3
1110xxxx  4 4
11110xxx  5 5
111110xx  6 6
1111110x  7 7
11111110  8 8
11111111  9 8
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Both the value and the length must be computed, so that length bits can be shifted off to 
find the start of the next token. (A similar encoding is used in the MPEG compression 
standard.) There are many ways to code this for a conventional RISC instruction set, but 
all of them require many instructions, because there are many tests to be done, and 
each test requires a single cycle (as opposed to a single gate delay for logic). For exam-
ple, in the MIPS instruction set, the above decode procedure might look like this:

/* input in t0, value out in t1, length out in t2 */ 
srl t1, t0, 6
li t3, 3
beq t3, t4, 2f
 li t2, 2
andi t3, t0, 0x20
beq t3, r0, 1f
 li t2, 3
andi t3, t0, 0x10
beq t3, r0, 1f
 li t2, 4
andi t3, t0, 0x08
beq t3, r0, 1f
 li t2, 5
andi t3, t0, 0x04
beq t3, r0, 1f
 li t2, 6
andi t3, t0, 0x02
beq t3, r0, 1f
 li t2, 7
andi t3, t0, 0x01
beq t3, r0, 1f
 li t2, 8
b 2f
 li t1, 9

1: /* length = value */
move t1, t2

2: /* done */

This is so expensive that a 256-entry lookup table is typically used instead. However, a 
256-entry lookup table takes significant space and can take many cycles to access. For 
longer Huffman encodings, the table size would become prohibitive, leading to more 
complex and slower code.

The logic to decode this requires roughly 30 gates (just the combinatorial logic function, 
not counting instruction decode and so forth) — less than 0.1% of a processor gate-
count — and can be computed by a special-purpose processor instruction in a single cy-
cle. This is a factor of 4 to 20 speed-up over using general-purpose instructions only. A 
processor extended to have this logic in the form of an instruction would simply do:

huff8t1, t0 /* t1[3:0] is length, t1[7:0] is value */ 
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Tensilica’s solution is to provide a mechanism with which to easily and efficiently extend 
processor architecture with application-specific instructions. 

1.1.2 Creating Custom Processor Configurations

While the ability to extend processor architecture, which we call extensibility, lets system 
designers incorporate new functionality into a processor, configurability lets processor 
designers specify whether (or how much) pre-designed functionality is required for a 
particular product.

The simplest sort of configurability is a binary choice: an architectural feature is either 
present or absent in a particular processor configuration. For example, a processor 
might be offered either with or without floating-point hardware. Multiple configurations of 
a set of architectural features could be created by the processor designer, not the 
system designer. 

System-design flexibility is improved by having finer gradations in processor-configura-
tion choices. For example, a processor configuration might allow the system designer to 
specify the number of registers in the register file, memory width, cache size, cache 
associativity, and so on.

1.1.3 Mapping the Architecture into Hardware

Extensibility and configurability provide great flexibility. However, the resulting design 
must still be mapped into physical hardware. Synthesis, placement, and routing tools 
allow high-level representations of a design to be automatically mapped into more 
detailed designs. While these mapping operations do not change the functionality of the 
design, they are important building blocks that facilitate extensibility and configurability. 

Many processors are manually designed all the way to the layout. For such a processor 
design, extensibility and configurability would require changes to the layout. By contrast, 
the Tensilica system builds on existing synthesis, placement, and routing tools so that 
configuration need only change the input to synthesis, and conventional mapping tech-
niques are used to create physical hardware.

Some synthesis tools choose different mapping based on the designer’s goal specifica-
tions, allowing the mapping to optimize for speed, power, area, or target components. 
This is as close to providing configurability that existing mapping tools come: the design-
er can specify different synthesis parameters for a fixed input. By contrast, the Tensilica 
approach lets the designer alter the input to synthesis, and change its functionality. 
4 Xtensa Instruction Set Architecture (ISA) Reference Manual
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1.1.4 Development and Verification Tools

Extending an architecture and reconfiguring a processor may require widespread 
changes in processor logic to keep pipeline stages synchronized. Such reconfiguration 
requires that the processor be re-verified. Tensilica automates these changes and 
makes them reliable. 

In addition, when the processor changes, the software tool chain — compilers, assem-
blers, linkers, debuggers, simulators, and profilers — must change as well. In the past, 
the cost of software changes associated with processor reconfigurations has been a 
major impediment. Tensilica automates these changes also.

Finally, it should be possible to get feedback on the performance, cost, power, and other 
effects of processor reconfiguration without taking the design through the entire map-
ping process. This feedback can be used to direct further reconfiguration of the proces-
sor until the system design goals are achieved. Tensilica’s technology dramatically 
improves the feedback loop.

1.2 The Xtensa Instruction Set Architecture

The Xtensa Instruction Set Architecture (ISA) is a new post-RISC ISA targeted at 
embedded, communication, and consumer products. The ISA is designed to provide: 

A high degree of extensibility
Industry-leading code density
Optimized low-power implementation
High performance
Low-cost implementation

This manual describes the Xtensa ISA — both the core architecture and the architectur-
al options. Figure 1–1 illustrates the general organization of the processor hardware in 
which the Xtensa ISA is implemented. This manual does not describe the memory map, 
protection model, or peripherals that can be implemented in particular configurations of 
the Xtensa ISA. 
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Figure 1–1.  Xtensa LX Hardware Architecture Block Diagram

Table 1–2 compares the architectural features provided by the Xtensa ISA to those of 
typical RISC architectures. Each of the Xtensa features are described in this manual.

Table 1–2.  Comparison of Typical RISC and Xtensa ISA Features 
Architectural Feature Typical RISC Xtensa
Instruction size 32 bits 24 and 16 bit
Compare and branch no or partial total
Application-specific instructions no yes
Zero-overhead loop no yes
Funnel shift no (except 29000) yes
Variable-increment register windows no yes
Conditional move recently yes
Compound multiply/add recently yes
Advanced multiprocessor synchronization recently yes
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1.2.1 Configurability

The Xtensa ISA goes further than incorporating post-RISC features: it is modular, 
consisting of a core architecture and architectural options. Table 1–3 lists the initial set 
of modular components. 

Table 1–3.  Modular Components 
Component Reference
Core Architecture Chapter 3,  "Core Architecture" on page 23
Core Architecture Section 4.2 “Core Architecture” on page 50
Options for Additional Instructions
Code Density Option "Code Density Option" on page 53
Loop Option "Loop Option" on page 54
Extended L32R Option "Extended L32R Option" on page 56
16-bit Integer Multiply Option "16-bit Integer Multiply Option" on page 57
32-bit Integer Multiply Option "32-bit Integer Multiply Option" on page 58
MAC16 Option "MAC16 Option" on page 60
Miscellaneous Operations Option "Miscellaneous Operations Option" on page 62
Coprocessor Option "Coprocessor Option" on page 63
Boolean Option "Boolean Option" on page 65
Floating-Point Coprocessor Option "Floating-Point Coprocessor Option" on page 67
Multiprocessor Synchronization Option "Multiprocessor Synchronization Option" on page 74
Conditional Store Option "Conditional Store Option" on page 77
Options for Interrupts and Exceptions
Exception Option "Exception Option" on page 82
Unaligned Exception Option "Unaligned Exception Option" on page 99
Interrupt Option "Interrupt Option" on page 100
High-Priority Interrupt Option "High-Priority Interrupt Option" on page 106
Timer Interrupt Option "Timer Interrupt Option" on page 110
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1.2.2 Extensibility

In addition to the Xtensa components shown in Table 1–3, designers can extend the 
Xtensa architecture by adding States, Register Files, and instructions that operate both 
on the AR Register File and on the additional states the designer has added. These in-
structions can be single cycle or multiple cycles, and share or re-use logic.

Options for Memory
Instruction Cache Option "Instruction Cache Option" on page 115
Instruction Cache Test Option "Instruction Cache Test Option" on page 116
Instruction Cache Index Lock Option "Instruction Cache Index Lock Option" on page 117
Data Cache Option "Data Cache Option" on page 118
Data Cache Test Option "Data Cache Test Option" on page 121
Data Cache Index Lock Option "Data Cache Index Lock Option" on page 122
Instruction RAM Option "Instruction RAM Option" on page 124
Instruction ROM Option "Instruction ROM Option" on page 125
Data RAM Option "Data RAM Option" on page 126
Data ROM Option "Data ROM Option" on page 126
XLMI Option "XLMI Option" on page 127
Hardware Alignment Option "Hardware Alignment Option" on page 128
Memory ECC/Parity Option "Memory ECC/Parity Option" on page 128
Options for Memory Protection
Region Protection Option "Region Protection Option" on page 150
Region Translation Option "Region Translation Option" on page 156
MMU Option "MMU Option" on page 158
Options for Other Purposes
Windowed Register Option "Windowed Register Option" on page 180
Processor Interface Option "Processor Interface Option" on page 194
Miscellaneous Special Registers Option "Miscellaneous Special Registers Option" on page 195
Thread Pointer Option "Thread Pointer Option" on page 196
Processor ID Option "Processor ID Option" on page 196
Debug Option "Debug Option" on page 197
Trace Port Option "Trace Port Option" on page 203

Table 1–3.  Modular Components (continued)
Component Reference
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1.2.2.1  State Extensions

The designer can add State Registers. These State Registers can be the source or 
destination of various instructions and are saved and restored by the operating system. 

1.2.2.2  Register File Extensions

The designer can add Register Files of widely varying size. These Register Files can be 
the source or destination of various instructions and are saved and restored by the 
operating system. The registers within them are allocated by the compiler, which can 
spill and re-fill them if necessary.

1.2.2.3  Instruction Extensions

The designer can define new instructions that contain simple functions consisting of 
combinatorial logic that takes one or two source operands from registers and produces a 
result to be written to a register:

AR[r] ← f(AR[s], AR[t])

Instructions can also be much more complex with register file values and State appear-
ing as both inputs and outputs. These Instructions are described using the Tensilica 
Instruction Extension (TIE) language (see Section 1.3.2).

1.2.2.4  Coprocessor Extensions

Another mechanism to extend the Xtensa ISA is to use the Coprocessor Option. A co-
processor is defined as a combination of registers, other state, and logic that operates 
on that state, including loads, stores and setting of Booleans for branch true/false oper-
ations. A particular coprocessor can be enabled or disabled to control with one bit 
whether or not instructions accessing that combination of registers and other state may 
or may not execute.

1.2.3 Time-to-Market

The Xtensa Software Development Toolkit includes automatically generated software 
that matches the designer’s processor configuration and eliminates tool headaches. The 
ISA’s rich set of features (for example, interrupt and debug facilities) makes the system 
designer’s job easier. The ability to create custom instructions with the TIE language 
allows the designer to reach performance goals with less code-tuning or hard-to-
interface-to external logic. 
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1.2.4 Code Density

The Xtensa core ISA is implemented as 24-bit instructions. This instruction width pro-
vides a direct 25% reduction in code size compared with 32-bit ISAs. The instructions 
provide access to the entire processor hardware and support special functions, such as 
single-instruction compare-and-branch, which reduce the number of instructions re-
quired to implement various applications. These special functions result in further code-
size reductions.

The Xtensa ISA also includes a Code Density Option that further reduces code size. 
This option adds 16-bit instructions that are distinguished by opcode, and that can be 
freely intermixed with 24-bit instructions to achieve higher code density than competing 
ISAs without giving up the performance of a 32-bit ISA. The 16-bit instructions add no 
new functionality but provide compact encoding of the most frequently used 24-bit in-
structions. In typical code, roughly half of all instructions can be encoded in 16 bits.

The core ISA omits the branch delay slots required by some RISC ISAs. This increases 
code density by eliminating NOPs the compiler uses to fill the slot after a branch when it 
cannot find a real instruction to put there (only 50% of the branch delay slots are filled on 
some RISC architectures).

The Xtensa ISA provides a Windowed Registers Option. Xtensa windowed registers re-
duce code size by:

Eliminating register saves and restores at procedure entry and exit
Reducing argument shuffling
Allowing more local variables to live permanently in registers

1.2.5 Low Implementation Cost

The Xtensa architecture is designed to facilitate efficient implementation. It can be im-
plemented with simple instruction pipelines and direct hardware execution without micro 
code. Operations that are too complex to easily implement with single instructions are 
synthesized into appropriate instruction sequences by the compiler. The base architec-
ture avoids instructions that would need extra register file read or write ports. This keeps 
the minimal configuration low-cost and low-power.

The Xtensa architecture fully supports the common data types and operations found in a 
broad range of applications. The base architecture omits special-purpose data types 
and operations. Optional instructions, the TIE language (see Section 1.3.2), and option-
al coprocessors allow the designer to add exactly the functionality needed, thus reduc-
ing the cost and performance due to unused general-purpose functions.
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The Xtensa ISA’s improvements in code size help reduce system cost (for example, by 
reducing the amount of ROM, Flash, or RAM required). Making features like the number 
of debug registers configurable allows the system designer, instead of the processor 
designer, to decide the cost/benefit trade-off. 

1.2.6 Low-Power

The Xtensa ISA has several energy-efficient attributes that enhance battery-operated 
systems. The core ISA is built on 32-bit operations; some embedded processors of sim-
ilar performance have 64-bit base operations, which consumes additional power, often 
unnecessarily. (TIE does allow 64-bit or greater computations to be added to the proces-
sor for those algorithms that require it, but these can be used selectively to achieve a 
balance between performance and power consumption.)

The core ISA uses a register file with only two read ports and one write port, a configura-
tion that requires fewer transistors and less power than architectures with more ports. 

The Xtensa Windowed Registers Option saves power by reducing the number of dy-
namic data-memory references and increasing the opportunities for variables to reside 
in registers, where accesses require less power than memory accesses. 

The WAITI (Wait for Interrupt) instruction, which is a part of the Interrupt Option, saves 
power by setting the current interrupt level, powering down the processor’s logic, and 
waiting for an interrupt. 

1.2.7 Performance

The Xtensa ISA achieves its extensibility, code density, and low-power advantages with-
out sacrificing performance. For example, the Thumb and MIPS16 extensions of the 
ARM and MIPS ISAs, respectively, provide improved code density by using only eight 
registers and by reducing operand flexibility. By contrast, the Xtensa 24-bit instructions 
can access 16 virtual registers with 3 register operands, and 16-bit instructions can 
access all 16 registers with 1 to 3 register operands. The mapping of the 16 virtual 
registers to the physical register file can eliminate register saves and restores at proce-
dure entry and exit, also increasing performance. 

The Xtensa ISA also enhances performance by providing: 
A complete set of compare-and-branch instructions, eliminating the need for sepa-
rate comparison instructions
LOOP, LOOPNEZ, and LOOPGTZ instructions that provide zero-overhead looping

These features are described in Section 3.8 of this manual. Other features of the archi-
tecture minimize critical paths, allow better compiler scheduling, and require fewer exe-
cuted instructions to implement a given program. 
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1.2.8 Pipelines

The Xtensa ISA can be implemented using a variety of pipelines. A 5-stage load-store 
oriented pipeline, such as is used in many RISC processors, is supported by Xtensa im-
plementations and illustrated in Figure 1–2. Many other variations are possible. A 7-
stage load-store oriented pipeline is supported by some Xtensa implementations. In-
structions can also have computation in later pipe stages so that the computation can 
use memory data loaded by the same instruction.

Figure 1–2.  Example Implementation Pipeline

The instruction set was also designed with a 2-read, 1-write general register file (called 
Address Registers) in mind. While this approach results in lower implementation cost, it 
prevents the inclusion of auto-incrementing loads and indexed stores to or from the 
Address Registers. For the sake of symmetry, the ISA therefore does not include auto-
incrementing stores and indexed loads. However, all of these addressing modes are 
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possible for designer defined loads and stores. Designers can implement register files 
with more read and write ports. For example, the Xtensa Floating-Point Coprocessor 
Option contains a floating point register file with three read ports.

1.3 The Xtensa Processor Generator

The Xtensa Processor Generator is the key to rapid, optimal creation of application-
specific processors. Using this tool, the designer can specify and generate a complete 
processor subsystem. The designer can select the instruction set, memory hierarchy, 
peripherals and interface options to fit the target application. 

The Generator user interface captures designer input in several ways, including:
Configuration of the processor micro-architecture
Configuration of Tensilica-provided instruction and coprocessor options
Specification of designer-defined instruction and coprocessor extensions, using the 
Tensilica Instruction Extension (TIE) language

Together, these specifications make up the configuration database shown near the top 
of Figure 1–3. This file is used to generate all the software tools and hardware descrip-
tions for the final application-specific processor. 

1.3.1 Processor Configuration

The Generator interface drives the creation and optimization of all forms of the proces-
sor needed for integration into the system design flow. Based on the designer’s specifi-
cations, it creates synthesizable Verilog or VHDL code, synthesis scripts, an HDL test 
bench, and physical placement files. Simultaneously, an optimized C and C++ compiler, 
assembler, linker, symbolic debugger, Instruction Set Simulator, libraries and verification 
tests are built for the designer’s software development. 

The Generator interface lets the designer specify implementation targets for speed, area 
and process technology, as well as the optimization priorities used in synthesis and lay-
out. 

1.3.2 System-Specific Instructions—The TIE Language

The Tensilica Instruction Extension (TIE) language lets the designer add instructions to 
the processor implementation, including full software support for generated instructions. 
The specification of instruction extensions can include the following aspects as well as 
many others:

Instruction Operation — Defines the operation of an additional instruction
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Immediate and Constant Tables — Defines constant values in instructions
Register File — Defines new register files
State — Defines new single processor states for instructions to operate on
Length and Format — The FLIX extensions to TIE allow for multiple instruction sizes 
and the defining of multiple operations in a single instruction
Queues and Ports — Defines input and output queue ports and other ports for the 
Xtensa processor
Types — Defines new C/C++ data types associated with user defined register files. 
Allows type checking and automatic loading, storing and register allocation
Prototypes — Defines the argument types of C/C++ intrinsics for each instruction 
and the instruction sequences for loading, storing, and moving the added types
Schedule — Defines the pipeline stages at which instructions use input values and 
produce output values

In addition to designer-defined register and register file operands, instructions can use 
AR registers as source values. They may generate multiple results, including AR register 
file results. These instructions should be designed to have circuit delays appropriate to 
the number cycles specified in the schedule specifications to avoid limiting the proces-
sor clock frequency. The instruction semantics are expressed in a subset of Verilog, 
including all commonly used operators (multiply, add, subtract, minus, not, or, compari-
sons, reduction operators, shifts, concatenation, and conditionals). 

The use of TIE for the creation of new instructions and coprocessors is described in the 
Tensilica Instruction Extension (TIE) Language User’s Guide. The TIE language is de-
scribed in the Tensilica Instruction Extension (TIE) Language Reference Manual. 
14 Xtensa Instruction Set Architecture (ISA) Reference Manual



Chapter 1. Introduction
Figure 1–3 illustrates the Xtensa design flow.

Figure 1–3.  The Xtensa Design Flow
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2. Notation

This manual uses the following notation for instruction descriptions. Additional notation 
specific to opcode encodings is provided in "Opcode Encodings" on page 574. 

2.1 Bit and Byte Order

This manual consistently uses little-endian bit ordering for describing instructions and 
registers. Bits in little-endian notation are numbered starting from 0 for the least-signifi-
cant bit of a field. However, this notation convention is independent of how an Xtensa 
processor actually numbers bits, because a given processor can be configured for either 
little- or big-endian byte and bit ordering. For most Xtensa instructions, bit numbering is 
irrelevant; only the BBC and BBS instructions assign bit numbers to values on which the 
processor operates. The BBC/BBS instructions use big-endian bit ordering (0 is the most-
significant bit) on a big-endian processor configuration. Bit numbering by the BBC/BBS 
instructions is illustrated in Figure 2–4.

In specifying little- or big-endian ordering during actual processor configuration, you are 
specifying both the bit and the byte order; the two orderings have the same most-signifi-
cant and least-significant ends. 

Figure 2–5 on page 18 illustrates big- and little-endian byte order, as implemented by 
Xtensa load (page 33) and store (page 36) instructions. Xtensa processors transfer data 
to and from the system using interfaces that are configurable in width (32, 64, or 128 bits 
in current implementations). These interfaces arrange their n bits according to their sig-
nificance representing an n-bit unsigned integer value (that is, 0 to 2n-1). Load and store 
instructions that reference quantities less than n bits access different bits of this integer 
in little-endian and big-endian byte orderings (for example, by changing the selection al-
gorithm for loads). Xtensa processors do not rearrange bits of a word to implement endi-
anness (for example, swapping bytes for big-endian operation).

Figure 2–4.  Big and Little Bit Numbering for BBC/BBS Instructions

Little-Endian bit numbering for BBC/BBS instructions:

Big-Endian bit numbering for BBC/BBS instructions:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

←most-significant least-significant→

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

←most-significant least-significant→
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Figure 2–5.  Big and Little Endian Byte Ordering

Little-Endian byte addresses, 128-bit processor interface:

Big-Endian byte addresses, 128-bit processor interface:

Little-Endian byte addresses, 64-bit processor interface:

Big-Endian byte addresses, 64-bit processor interface:

Little-Endian byte addresses, 32-bit processor interface:

Big-Endian byte addresses, 32-bit processor interface:

127 (←most-significant) (least-significant→) 0

word 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

word 1 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

word 2 … 32

127 (←most-significant) (least-significant→) 0

word 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

word 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

word 2 32 …

63 (←most-significant) (least-significant→) 0
word 0 7 6 5 4 3 2 1 0
word 1 15 14 13 12 11 10 9 8
word 2 … 16

63 (←most-significant) (least-significant→) 0

word 0 0 1 2 3 4 5 6 7

word 1 8 9 10 11 12 13 14 15

word 2 16 …

31 0

word 0 3 2 1 0

word 1 7 6 5 4

word 2 … 8

31 0

word 0 0 1 2 3

word 1 4 5 6 7

word 2 8 …
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2.2 Expressions

Table 2–4 defines notational forms used in expressions that describe the operation of in-
structions. In the table, v is an n-bit quantity, u is an m-bit quantity, and t is a 1-bit 
quantity. 

Table 2–4.  Instruction-Description Expressions 
Expression Notation1 Definition
vx Bit x of v. The result is 1 bit.
vx..y Bits from position x to y of v. The result is x-y+1 bits.
vy The value v replicated y times. The result is n×y bits.
array[i] Reference to element i of array.
u || v The catenation of bit strings u and v. The result is m+n bits.
not v Bitwise logical complement of v. The result is n bits.

u and v
Bitwise logical and of u and v. u and v must be the same width. The result is n 
bits.

u or v
Bitwise logical or of u and v. u and v must be the same width. The result is n 
bits.

u xor v
Bitwise logical exclusive or of u and v. u and v must be the same width. The 
result is n bits.

u = v
Test for exact equality of u and v. u and v must be the same width. The result 
is 1 bit.

u ≠ v Test for inequality of u and v. u and v must be the same width. The result is 1 
bit.

u < v
Two’s complement less-than test on u and v. u and v must be the same width. 
The result is 1 bit.

u ≤ v Two’s complement less-than or equal-to test on u and v. u and v must be the 
same width. The result is 1 bit.

u > v
Two’s complement greater-than test on u and v. u and v must be the same 
width. The result is 1 bit.

u ≥ v Two’s complement greater-than or equal-to test on u and v. u and v must be 
the same width. The result is 1 bit.

u + v
Two’s complement addition of u and v. u and v must be the same width. The 
result is n bits.

u - v
Two’s complement subtraction of u and v. u and v must be the same width. 
The result is n bits.

u x v
Low-order product of two’s complement multiplication of u and v. u and v must 
be the same width. The result is n bits.

1. t is a 1-bit quantity, u is a m-bit quantity, v is an n-bit quantity. Constants are written either as decimal numbers, in which case the width is 
determined from context, or in binary.
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2.3 Unsigned Semantics

In this notation, prepending a zero bit is often used for unsigned semantics. For 
example, the following notation indicates an unsigned less-than test: 

(0 || u) < (0 || v)

2.4 Case

Processor-state variables (for example, registers) are shown in UPPER CASE.

Temporary variables are shown in lower case. If a particular variable is in italics 
(variable), it is local in the sense that it has no meaning outside the local instruction 
flow. If it is plain (variable), it comes from or is used outside of the local instruction 
flow such as an instruction field or the next PC.

u quo v
Quotient of two’s complement division of u by v. u and v must be the same 
width. The result is n bits.

u rem v
Remainder of two’s complement division of u by v. u and v must be the same 
width. The result is n bits.

if t then u else v Conditional expression. The value is u if t = 1. The value is v if t = 0.

u +s v
IEEE754 single-precision floating-point addition of u and v. u and v must be 
32 bits. The result is 32 bits.

u -s v
IEEE754 single-precision floating-point subtraction of u and v. u and v must 
be 32 bits. The result is 32 bits.

u Xs v
IEEE754 single-precision floating-point multiplication of u and v. u and v must 
be 32 bits. The result is 32 bits.

u ÷s v
IEEE754 single-precision floating-point division of u by v. u and v must be 32 
bits. The result is 32 bits.

sqrts(u)
IEEE754 single-precision floating-point square root of u. u must be 32 bits. The 
result is 32 bits.

pows(u,v)
IEEE754 single-precision floating-point power function where u is raised to the 
v power. u must be 32 bits. The result is 32 bits.

Table 2–4.  Instruction-Description Expressions (continued)
Expression Notation1 Definition

1. t is a 1-bit quantity, u is a m-bit quantity, v is an n-bit quantity. Constants are written either as decimal numbers, in which case the width is 
determined from context, or in binary.
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2.5 Statements

Table 2–5 defines notational forms used in statements used to describe the operation of 
instructions.

2.6 Instruction Fields

The fields in Table 2–6 are used in the descriptions of the instructions. Instruction for-
mats and opcodes are described in Chapter 7, "Instruction Formats and Opcodes" on 
page 569.

Table 2–5.  Instruction-Description Statements 
Statement Notation Definition
v ← expr Assignment of expr to v.
if t1 then

s1
[elseif t2 then

s2]
.
.
.
[else

sn]
endif

Conditional statement. If t1 = 1 then execute statements s1. Otherwise, if t2 = 
1 then execute statements s2, etc. Finally if none of the previous tests are true, 
execute statements sn.

label: Define label for use as a goto target.
goto label Transfer control to label.

Table 2–6.  Uses Of Instruction Fields 
Field Definition
op0 Major opcode
op1 4-bit sub-opcode for 24-bit instructions
op2 4-bit sub-opcode for 24-bit instructions

r
AR target (result), BR target (result), 
4-bit immediate, 
4-bit sub-opcode

s
AR source, BR source,
AR target

t
AR target, BR target, 
AR source, BR source, 
4-bit sub-opcode
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n

Register window increment,
2-bit sub-opcode,
n||2'b00 is used as a AR target on CALLn/CALLXn

m 2-bit sub-opcode
i 1-bit sub-opcode
z 1-bit sub-opcode
imm4 4-bit immediate
imm6 6-bit immediate (PC-relative offset)
imm7 7-bit immediate (for MOVI.N)
imm8 8-bit immediate
imm12 12-bit immediate
imm16 16-bit immediate
offset 18-bit PC-relative offset
ai4const 4-bit immediate, if 0 interpreted as -1, else sign-extended
b4const 4-bit encoded constant value
bbi 5-bit selector for Booleans in registers
sa 4- or 5-bit shift amount
sr 8-bit special register selector
x 1-bit MAC16 data register selector (m0 or m1 only)
y 1-bit MAC16 data register selector (m2 or m3 only)
w 2-bit MAC16 data register selector (m0, m1, m2, or m3)

Table 2–6.  Uses Of Instruction Fields (continued)
Field Definition
22 Xtensa Instruction Set Architecture (ISA) Reference Manual



Chapter 3. Core Architecture
3. Core Architecture

The Xtensa Core Architecture provides a baseline set of instructions available in every 
Xtensa implementation. Having such a baseline eases the implementation of core soft-
ware such as operating system ports and a compiler. This chapter describes that Core 
Architecture.

3.1 Overview of the Core Architecture

The Xtensa Instruction Set is the product of extensive research into the right balance of 
features to best address the needs of the embedded processor market. It borrows the 
best features of other architectures as well as bringing new ISA innovations of its own. 
While the Xtensa ISA derives most of its features from RISC, it has targeted areas in 
which older CISC architectures have been strongest, such as compact code.

The Xtensa core ISA is implemented as a set of 24-bit instructions that perform 32-bit 
operations. The instruction width was chosen primarily with code-size economy in mind. 
The instructions themselves were selected for their utility in a wide range of embedded 
applications. The core ISA has many powerful features, such as compound operation 
instructions, that enhance its fit to embedded applications, but it avoids features that 
would benefit some applications at the expense of cost or power on others (for example, 
features that require extra register-file ports). Such features can be implemented in the 
Xtensa architecture using options and coprocessors specifically targeted at a particular 
application area.

The Xtensa ISA is organized as a core set of instructions with various optional packages 
that extend the functionality for specific application areas. This allows the designer to 
include only the required functionality in the processor core, maximizing the efficiency of 
the solution. The core ISA provides the functionality required for general control applica-
tions, and excels at decision-making and bit and byte manipulation. The core also pro-
vides a target for third-party software, and for this reason deletions from the core are not 
supported. Conversely, numeric computing applications such as digital signal process-
ing are best done with optional ISA packages appropriate for specific application areas, 
such as the MAC16 Option for integer filters, or the Floating-Point Coprocessor Option 
for high-end audio processing.

3.2 Processor-Configuration Parameters

Table 3–7 lists the processor-configuration parameters that are required in the core ar-
chitecture. Additional processor-configuration parameters are listed with each option 
described in Chapter 4, "Architectural Options" on page 47.
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3.3 Registers

Table 3–8 lists the core-architecture registers. Each register is described in the sections 
that follow. Additional registers are added with many of the options described in 
Chapter 4. The complete set of registers that are predefined in the architecture, includ-
ing all registers used by the architectural options, is listed in Table 5–127 on page 205.

3.3.1 General (AR) Registers

Each instruction contains up to three 4-bit general-register specifiers, each of which can 
select one of 16 32-bit registers. These general registers are named address registers 
(AR) to distinguish them from coprocessor registers, which in many systems might serve 
as “data” registers. However, the AR registers are not restricted to holding addresses; 
they can also hold data. 

If the Windowed Register Option is configured, the address register file is extended and 
a mapping from virtual to physical registers is used.

The contents of the address register file are undefined after reset.

Table 3–7.  Core Processor-Configuration Parameters 
Parameter Description Valid Values

msbFirst

 
Byte order

0 or 1
0 → Little-endian (least significant bit first)
1 → Big-endian (most significant bit first)

Table 3–8.  Core-Architecture Set 

Register 
Mnemonic Quantity Width 

(bits) Register Name R/W
Special 
Register 
Number1

AR
162 32 Address registers 

(general registers)
R/W —

PC 1 32 Program counter R/W —
SAR 1  6 Shift-amount register R/W 3
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 5–127 on 

page 205. A dash (—) means that the register is not a Special Register. 
2. See "Windowed Register Option" on page 180.
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3.3.2 Shifts and the Shift Amount Register (SAR)

The ISA provides conventional immediate shifts (logical left, logical right, and arithmetic 
right), but it does not provide single-instruction shifts in which the shift amount is a regis-
ter operand. Taking the shift amount from a general register can create a critical timing 
path. Also, simple shifts do not extend efficiently to larger widths. Funnel shifts (where 
two data values are catenated on input to the shifter) solve this problem, but require too 
many operands. The ISA solves both problems by providing a funnel shift in which the 
shift amount is taken from the SAR register. Variable shifts are synthesized by the com-
piler using an instruction to compute SAR from the shift amount in a general register, 
followed by a funnel shift.

Another advantage is that a unidirectional funnel shifter can be manipulated to provide 
either right or left shifts based on the order of the source operands and transformation of 
the shift amount. The ISA facilitates implementations that exploit this to reduce the logic 
required by the shifter.

Funnel shifts are also useful for working with the 40-bit accumulator values created by 
the MAC16 Option.

To facilitate unsigned bit-field extraction, the EXTUI instructions take a 4-bit mask field 
that specifies the number of bits to mask the result of the shift. The 4-bit field specifies 
masks of one to 16 ones. The SRLI instruction provides shifting without a mask.

The legal range of values for SAR is zero to 32, not zero to 31, so SAR is defined as six 
bits. The use of SRC, SRA, SLL, or SRL when SAR > 32 is undefined.

SAR is undefined after processor reset.

The funnel shifter can also be used efficiently for byte alignment of unaligned memory 
data. To load four bytes from an arbitrary byte boundary (in a processor that does not 
have the Unaligned Exception Option), use the following code:

l32i a4,a3,0
l32i a5,a3,4
ssa8l a3
src a4,a5,a4

An unaligned block copy can be done (in a processor that does not have the Unaligned 
Exception Option) with the following code for little-endian and small changes for big-en-
dian:

l32i a6,a3,0
ssa8l a3
loopnez a4,endloop

loop:
l32i a7,a3,4
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src a8,a7,a6
s32i a8,a2,0
l32i a6,a3,8
src a8,a6,a7
s32i a8,a2,4
addi a2,a2,8
addi a3,a3,8

endloop:

The overhead, compared to an aligned copy, is only one SRC per L32I.

3.3.3 Reading and Writing the Special Registers

The SAR register is part of the Non-Privileged Special Register set in the Xtensa ISA (the 
other registers in this set are associated with the architectural options). The contents of 
the special register in the Core Architecture can be read to an AR register with the read 
special register (RSR.SAR) instruction or written from an AR register with the write spe-
cial register (WSR.SAR) instruction as shown in Table 3–9. The exchange special regis-
ter (XSR.SAR) instruction accomplishes the combined action of the read and write in-
structions.

3.4 Data Formats and Alignment

The Core Architecture supports byte, 2-byte, and 4-byte data formats. Two additional 
data formats are used in architectural options — a 32-bit single-precision format for the 
Floating-Point Coprocessor Option, and a 40-bit accumulator value for the MAC16 Op-
tion. The MAC16 format is not a memory-operand format, but rather a temporary format 
held in a special 40-bit accumulator register during MAC16 execution; the result can be 
moved to two 32-bit registers for further operation or storage. 

Table 3–10 summarizes the width and alignment of each data type. The processor uses 
byte addressing for all data types stored in memory (that is, all except the MAC16 accu-
mulator). Byte order can be specified as either big-endian or little-endian. In big-endian 
byte order, byte 0 is the most-significant (left-most) byte. In little-endian byte order, byte 
0 is the least-significant (right-most) byte. When specifying a byte order, both the byte 
order and the bit order are specified: the two orderings always have the same most-
significant and least-significant ends.

Table 3–9.  Reading and Writing Special Registers 
Register Name Special Register Number RSR .SAR Instruction WSR .SAR Instruction
SAR 3 AR[t] ← 026||SAR SAR ← AR[t]5..0
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3.5 Memory

The Xtensa ISA is based on 32-bit virtual and physical memory addresses, which 
provides a 232 or 4 GB address space for instructions and data. 

3.5.1 Memory Addressing

Figure 3–6 shows an example of the processor’s interpretation of addresses when con-
figured with caches. The widths of all fields are configurable, and in some cases the 
width may be zero (in particular, there are always zero ignored bits today). The cache in-
dex and cache tag will overlap if the page size is smaller than the size of a single way of 
the cache and if physical tags are used.

Figure 3–6.  Virtual Address Fields

Without the Region Protection Option or the MMU Option, virtual and physical address-
es are identical; if physical addresses are configured to be smaller than virtual address-
es, virtual addresses are mapped to physical addresses only by truncation (high-order 
bits are ignored). With the Region Protection Option or the MMU Option, virtual page 
numbers are translated to physical page numbers.

Table 3–10.  Operand Formats and Alignment 
Operand Length Alignment Address in Memory
Byte 8 bit xxxx
2-byte 16 bits xxx0
4-byte (word) 32 bits xx00
IEEE-754 single-precision (Floating-Point Coprocessor Option) 32 bits xx00
MAC16 accumulator (MAC16 Option) 40 bits register image only (not in memory)

Cache Tag

31

Cache Index

Ignored

Line IndexAttribute
Region

Offset in Page

Physical Address

0

32-Bit Virtual Address
Xtensa Instruction Set Architecture (ISA) Reference Manual 27



Chapter 3. Core Architecture
Without the Region Protection Option or the MMU Option, the formal definition of virtual 
to physical translation is as follows (note that the ring parameter is ignored):

function ftranslate(vAddr, ring)-- fetch translate
b ← vAddr(VABITS-1)..(VABITS-3)
cacheattr ← CACHEATTR(b||2'b11)..(b||2'b00)
attributes ← fcadecode(cacheattr)
cause ← invalid(attributes) then InstructionFetchErrorCause else 0
ftranslate ← (vAddrPABITS-1..0, attributes, cause)

endfunction ftranslate

function ltranslate(vAddr, ring)-- load translate
b ← vAddr(VABITS-1)..(VABITS-3)
cacheattr ← CACHEATTR(b||2'b11)..(b||2'b00)
attributes ← lcadecode(cacheattr)
cause ← invalid(attributes) then LoadStoreErrorCause else 0
ltranslate ← (vAddrPABITS-1..0, attributes, cause)

endfunction ltranslate

function stranslate(vAddr, ring)-- store translate
b ← vAddr(VABITS-1)..(VABITS-3)
cacheattr ← CACHEATTR(b||2'b11)..(b||2'b00)
attributes ← scadecode(cacheattr)
cause ← invalid(attributes) then LoadStoreErrorCause else 0
stranslate ← (vAddrPABITS-1..0, attributes, cause)

endfunction stranslate

Translation with the MMU Option is described in Section 4.6.5.

The core ISA supports both little-endian (PC compatible) and big-endian (Internet com-
patible) address models as a configuration parameter. In this manual:

msbFirst = 1 is big-endian.
msbFirst = 0 is little-endian.

3.5.2 Addressing Modes

The core instruction set implements the register + immediate addressing mode. The 
core ISA does not implement auto-incrementing stores or indexed loads. However, such 
addressing modes are possible for coprocessors. For example, the Floating-Point 
Coprocessor Option implements indexed as well as immediate addressing modes. 
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3.5.3 Program Counter

The 32-bit program counter (PC) holds a byte address and can address 4 GB of virtual 
memory for instructions. However, when the Windowed Register Option is configured, 
the register-window call instructions only store the low 30 bits of the return address. 
Register-window return instructions leave the two most-significant bits of the PC un-
changed. Therefore, subroutines called using register window instructions must be 
placed in the same 1 GB address region as the call.

3.5.4 Instruction Fetch

This section describes the execution loop of the processor using the notation of 
Chapter 2. The individual instruction actions are represented by the Inst() statement, 
and are detailed in subsequent sections. Two versions of this code are supported; one 
for little-endian (msbFirst = 0) and one for big-endian (msbFirst = 1). This definition 
is in terms of a hypothetical aligned 64-bit fetch, and should not be confused with the 
fetch algorithms used by specific Xtensa ISA implementations. Aligned 32-bit fetch and 
unaligned fetch are other possible implementations, which would produce logically 
equivalent results, but with different timings. Also, actual implementations would be ex-
pected to access memory only once for each fetch unit, not once per instruction as in the 
definition in Section 3.5.4.1 and Section 3.5.4.2. 

The processor may speculatively fetch instructions following the address in the program 
counter. To facilitate this and to allow flexibility in the implementation, software must not 
position instructions within the last 64 bytes before a boundary where protection or 
cache attributes change. This exclusion does not apply if one of the two protections or 
attributes is invalid. Instructions may be placed within 64 bytes before a transition from 
valid to invalid or from invalid to valid — but not before any other transition. In addition, if 
the Windowed Register Option is implemented, software must not position instructions 
within the last 16 bytes of a 230 (1 GB) boundary, to allow flexibility in the implementation 
of the register-window call and return instructions. The operation of the processor in 
these exclusion regions is not defined. 

3.5.4.1  Little-Endian Fetch Semantics

Little-endian instruction fetch is defined as follows for a 64-bit fetch width (other fetch 
sizes are similar):

checkInterrupts() -- see "Checking for Interrupts" on page 109
vAddr0 ← PC31..3||3'b000 -- this example is 64-bit fetch
(pAddr0, attributes, cause) ← ftranslate(vAddr0, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr0
Exception (cause)
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goto abortInstruction
endif
(mem0, error) ← ReadInstMemory(pAddr0, attributes, 8'b11111111)

-- get start of instruction
if error then

EXCVADDR ← vAddr0
Exception (InstructionFetchErrorCause)
goto abortInstruction

endif
b ← 0||PC2..0
if b2 = 0 or b1 = 0 or (b0 = 0 and mem0(b||3'b011) = 1) then

-- instruction contained within a single fetch (64 bits in this example)
inst ← (undefined64||mem0)((b+2)||3'b111)..(b||3'b000)

else
-- instruction crosses a fetch boundary (64 bits in this example)
vAddr1 ← vaddr0 + 32'd8
(pAddr1, attributes, cause) ← ftranslate(vAddr1, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr1
Exception (cause)
goto abortInstruction

endif
(mem1, error) ← ReadInstMemory(pAddr1,

   attributes, 8'b11111111)
if error then

EXCVADDR ← vAddr1
Exception (InstructionFetchErrorCause)
goto abortInstruction

endif
inst ← (mem1||mem0)((b+2)||3'b111)..(b||3'b000)

endif
-- now have a 24-bit instruction (8 bits undefined if 16-bit), break it into fields
op0 ← inst3..0
t ← inst7..4
s ← inst11..8
r ← inst15..12
op1 ← inst19..16
op2 ← inst23..20
imm8 ← inst23..16
imm12 ← inst23..12
imm16 ← inst23..8
offset ← inst23..6
n ← inst5..4
m ← inst7..6
-- compute nextPC (may be overridden by branches, etc.)
nextPC ← PC + (030 || (if op03 then 2'b10 else 2'b11))
if LCOUNT ≠ 032 and CLOOPENABLE and nextPC = LEND then

LCOUNT ← LCOUNT − 1
nextPC ← LBEG
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endif
-- execute instruction
Inst()
checkIcount ()

abortInstruction:
PC ← nextPC

3.5.4.2  Big-Endian Fetch Semantics

Big-endian instruction fetch is defined as follows for a 64-bit fetch width (other fetch 
sizes are similar):

checkInterrupts() -- see "Checking for Interrupts" on page 109
vAddr0 ← PC31..3||3'b000 -- this example is 64-bit fetch
(pAddr0, attributes, cause) ← ftranslate(vAddr0, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr0
Exception (cause)
goto abortInstruction

endif
(mem0, error) ← ReadInstMemory(pAddr0, attributes, 8'b11111111)

-- get start of instruction
if error then

EXCVADDR ← vAddr0
Exception (InstructionFetchErrorCause)
goto abortInstruction

endif
b ← 0||PC2..0
p0 ← b xor 14

p2 ← (b + 2) xor 14
if b2 = 0 or b1 = 0 or (b0 = 0 and (mem0||undefined64)(p0||3'b111) = 1) 

then
-- instruction contained within a single fetch (64 bits in this example)
inst ← (mem0||undefined64)(p0||3'b111)..(p2||3'b000)

else
-- instruction crosses a fetch boundary (64 bits in this example)
vAddr1 ← vaddr0 + 32'd8
(pAddr1, attributes, cause) ← ftranslate(vAddr1, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr1
Exception (cause)
goto abortInstruction

endif
(mem1, error) ← ReadInstMemory(pAddr1,

   attributes, 8'b11111111)
if error then

EXCVADDR ← vAddr1
Exception (InstructionFetchErrorCause)
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goto abortInstruction
endif
inst ← (mem0||mem1)(p0||3'b111)..(p2||3'b000)

endif
-- now have a 24-bit instruction (8 bits undefined if 16-bit), break it into fields
op0 ← inst23..20
t ← inst19..16
s ← inst15..12
r ← inst11..8
op1 ← inst7..4
op2 ← inst3..0
imm8 ← inst7..0
imm12 ← inst11..0
imm16 ← inst15..0
offset ← inst17..0
n ← inst19..18
m ← inst17..16
-- compute nextPC (may be overridden by branches, etc.)
nextPC ← PC + (030 || (if op03 then 2'b10 else 3'b11))
if LCOUNT ≠ 032 and CLOOPENABLE and nextPC = LEND then

LCOUNT ← LCOUNT − 1
nextPC ← LBEG

endif
-- execute instruction
Inst()
checkIcount ()

abortInstruction:
PC ← nextPC

3.6 Reset

When the processor emerges from the reset state, it initializes many registers. The ISA 
guarantees the values of some states after reset but leaves many others undefined. 
Actual Xtensa processor implementations will often define the values of state left 
undefined by the ISA. Chapter 5, "Processor State" on page 205 contains information 
about each state value, including the value to which it is reset.

3.7 Exceptions and Interrupts

The core ISA does not include support for exceptions or interrupts. These are architec-
tural options are described in Section 4.4. Software running on a processor that is con-
figured without an Exception Option should be well tested, as such a processor will do 
something unexpected if it encounters a software error. 
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3.8 Instruction Summary

Table 3–11 summarizes the core instructions included in all versions of the Xtensa archi-
tecture. The remainder of this section gives an overview of the core instructions. 

3.8.1 Load Instructions

Load instructions form a virtual address by adding a base register and an 8-bit unsigned 
offset. This virtual address is translated to a physical address if necessary. The physical 
address is then used to access the memory system (often through a cache). The memo-
ry system returns a data item (either 32, 64, or 128 bits, depending on the configura-
tion). The load instructions then extract the referenced data from that memory item and 
either zero-extend or sign-extend the result to be written into a register. Unless the 

Table 3–11.  Core Instruction Summary 
Instruction Category Instructions1 Reference

Load L8UI, L16SI, L16UI, L32I, 
L32R

"Load Instructions" on page 33

Store S8I, S16I, S32I "Store Instructions" on page 36
Memory ordering MEMW, EXTW "Memory Access Ordering" on page 39
Jump, Call CALL0, CALLX0, RET

J, JX
"Jump and Call Instructions" on page 
40

Conditional branch BALL, BNALL, BANY, BNONE
BBC, BBCI, BBS, BBSI
BEQ, BEQI, BEQZ
BNE, BNEI, BNEZ
BGE, BGEI, BGEU, BGEUI, BGEZ
BLT, BLTI, BLTU, BLTUI, BLTZ

"Conditional Branch Instructions" on 
page 40

Move MOVI, MOVEQZ, MOVGEZ, 
MOVLTZ, MOVNEZ

"Move Instructions" on page 42

Arithmetic ADDI, ADDMI,
ADD, ADDX2, ADDX4, ADDX8,
SUB, SUBX2, SUBX4, SUBX8, 
NEG, ABS

"Arithmetic Instructions" on page 43

Bitwise logical
AND, OR, XOR

"Bitwise Logical Instructions" on page 
44

Shift EXTUI, SRLI, SRAI, SLLI
SRC, SLL, SRL, SRA
SSL, SSR, SSAI, SSA8B, SSA8L

"Shift Instructions" on page 44

Processor control RSR, WSR, XSR, RUR, WUR, 
ISYNC, RSYNC, ESYNC, DSYNC, 
NOP

"Processor Control Instructions" on 
page 45

1. These instructions are fully described in Chapter 6, "Instruction Descriptions" on page 243.
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Unaligned Exception Option is enabled, the processor does not handle misaligned data 
or trap when a misaligned address is used; instead it simply loads the aligned data item 
containing the computed virtual address. This allows the funnel shifter to be used with a 
pair of loads to reference data on any byte address.

Only the loads L32I, L32I.N, and L32R can access InstRAM and InstROM locations.

Table 3–12 shows the loads in the Core Architecture.

Because the operation of caches is implementation-specific, this manual does not pro-
vide a formal specification of cache access.

The following routines define the load instructions:

function ReadMemory (pAddr, attributes, bytemask)
ReadMemory ← (Memory[pAddr], 0) -- for now, no cache

endfunction ReadMemory

function Load8 (vAddr)
(pAddr, attributes, cause) ← ltranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)
goto abortInstruction

endif
p ← pAddr2..0 xor msbFirst

3

(mem64, error) ← ReadMemory(pAddr31..3, attributes, 0
7-p||1||0p)

mem8 ← mem64(p||3'b111)..(p||3'b000)
Load8 ← (mem8, error)

endfunction Load8

function Load16 (vAddr)
if UnalignedExceptionOption & Vaddr0 ≠ 1’b0 then

EXCVADDR ← vAddr
Exception (LoadStoreAlignmentCause)
goto abortInstruction

Table 3–12.  Load Instructions 
Instruction Format Definition
L8UI RRI8 8-bit unsigned load (8-bit offset)
L16SI RRI8 16-bit signed load (8-bit shifted offset)
L16UI RRI8 16-bit unsigned load (8-bit shifted offset)
L32I RRI8 32-bit load (8-bit shifted offset)
L32R RI16 32-bit load PC-relative (16-bit negative word offset)
34 Xtensa Instruction Set Architecture (ISA) Reference Manual



Chapter 3. Core Architecture
endif
(pAddr, attributes, cause) ← ltranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)
goto abortInstruction

endif
p ← pAddr2..1 xor msbFirst

2

(mem64, error) ← ReadMemory(pAddr31..3, attributes, 
(2'b00)3-p||2'b11||(2'b00)p)

mem16 ← mem64(p||4'b1111)..(p||4'b0000)
Load16 ← (mem16, error)

endfunction Load16

function Load32 (vAddr)
if UnalignedExceptionOption & Vaddr1..0 ≠ 2’b00 then

EXCVADDR ← vAddr
Exception (LoadStoreAlignmentCause)
goto abortInstruction

endif
(pAddr, attributes, cause) ← ltranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)
goto abortInstruction

endif
p ← pAddr2 xor msbFirst
(mem64, error) ← ReadMemory(pAddr31..3, attributes, 

(4'b0000)1-p||4'b1111||(4'b0000)p)
mem32 ← mem64(p||5'b11111)..(p||5'b00000)
Load32 ← (mem32, error)

endfunction Load32

function Load32Ring (vAddr, ring)
if UnalignedExceptionOption & Vaddr1..0 ≠ 2’b00 then

EXCVADDR ← vAddr
Exception (LoadStoreAlignmentCause)
goto abortInstruction

endif
(pAddr, attributes, cause) ← ltranslate(vAddr, ring)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)
goto abortInstruction

endif
p ← pAddr2 xor msbFirst
(mem64, error) ← ReadMemory(pAddr31..3, attributes, 

(4'b0000)1-p||4'b1111||(4'b0000)p)
mem32 ← mem64(p||5'b11111)..(p||5'b00000)
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Load32 ← (mem32, error)
endfunction Load32Ring

function Load64 (vAddr)
if UnalignedExceptionOption & Vaddr2..0 ≠ 3’b000 then

EXCVADDR ← vAddr
Exception (LoadStoreAlignmentCause)
goto abortInstruction

endif
(pAddr, attributes, cause) ← ltranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)
goto abortInstruction

endif
Load64 ← ReadMemory(pAddr31..3, attributes, 8'b11111111)

endfunction Load64

3.8.2 Store Instructions

Store instructions are similar to load instructions in address formation. Store memory 
errors are not synchronous exceptions; it is expected that the memory system will use 
an interrupt to indicate an error on a store.

Only the stores S32I and S32I.N can access InstRAM.

Table 3–13 shows the loads in the Core Architecture.

The following routines define the store instructions:

procedure WriteMemory (pAddr, attributes, bytemask, data64)
-- for now, no cache
if bytemask0 then

Memory[pAddr]7..0 ← data647..0
endif
if bytemask1 then

Memory[pAddr]15..8 ← data6415..8
endif
if bytemask2 then

Table 3–13.  Store Instructions 
Instruction Format Definition
S8I RRI8 8-bit store (8-bit offset)
S16I RRI8 16-bit store (8-bit shifted offset)
S32I RRI8 32-bit store (8-bit shifted offset)
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Memory[pAddr]23..16 ← data6423..16
endif
if bytemask3 then

Memory[pAddr]31..24 ← data6431..24
endif
if bytemask4 then

Memory[pAddr]39..32 ← data6439..32
endif
if bytemask5 then

Memory[pAddr]47..40 ← data6447..40
endif
if bytemask6 then

Memory[pAddr]55..48 ← data6455..48
endif
if bytemask7 then

Memory[pAddr]63..56 ← data6463..56
endif

endprocedure WriteMemory

procedure Store8 (vAddr, data8)
(pAddr, attributes, cause) ← stranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)
goto abortInstruction

endif
p ← pAddr2..0 xor msbFirst

3

WriteMemory(pAddr31..3, attributes, 0
7−p||1||0p, 

undefined(7−p)||3'b000||data8||undefinedp||3'b000)
endprocedure Store8

procedure Store16 (vAddr, data16)
if UnalignedExceptionOption & Vaddr0 ≠ 1’b0 then

EXCVADDR ← vAddr
Exception (LoadStoreAlignmentCause)
goto abortInstruction

endif
(pAddr, attributes, cause) ← stranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)
goto abortInstruction

endif
p ← pAddr2..1 xor msbFirst

2

WriteMemory(pAddr31..3, attributes, (2'b00)
3-p||2'b11||(2'b00)p, 

undefined(3-p)||4'b0000||data16||undefinedp||4'b0000)
endprocedure Store16

procedure Store32 (vAddr, data32)
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if UnalignedExceptionOption & Vaddr1..0 ≠ 2’b00 then
EXCVADDR ← vAddr
Exception (LoadStoreAlignmentCause)
goto abortInstruction

endif
(pAddr, attributes, cause) ← stranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)
goto abortInstruction

endif
p ← pAddr2 xor msbFirst
WriteMemory(pAddr31..3, attributes, (4'b0000)

1-

p||4'b1111||(4'b0000)p, 
undefined(1-p)||5'b00000||data32||undefinedp||5'b00000)

endprocedure Store32

procedure Store32Ring (vAddr, data32, ring)
if UnalignedExceptionOption & Vaddr1..0 ≠ 2’b00 then

EXCVADDR ← vAddr
Exception (LoadStoreAlignmentCause)
goto abortInstruction

endif
(pAddr, attributes, cause) ← stranslate(vAddr, ring)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)
goto abortInstruction

endif
p ← pAddr2 xor msbFirst
WriteMemory(pAddr31..3, attributes, (4'b0000)

1-

p||4'b1111||(4'b0000)p, 
undefined(1-p)||5'b00000||data32||undefinedp||5'b00000)

endprocedure Store32Ring

procedure Store64 (vAddr, data64)
if UnalignedExceptionOption & Vaddr2..0 ≠ 3’b000 then

EXCVADDR ← vAddr
Exception (LoadStoreAlignmentCause)
goto abortInstruction

endif
(pAddr, attributes, cause) ← stranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)
goto abortInstruction

endif
WriteMemory(pAddr31..3, attributes, 8'b11111111, data64)

endprocedure Store64
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3.8.3 Memory Access Ordering

Xtensa implementations can perform ordinary load and store operations in any order, as 
long as loads return the last (as defined by program execution order) values stored to 
each byte of the load address for a single processor and a simple memory. This flexibili-
ty is appropriate because most memory accesses require only these semantics and 
some implementations may be able to execute programs significantly faster by exploit-
ing non-program order memory access. The Xtensa ISA only requires that implementa-
tions follow a simplified version of the Release Consistency model1 of memory access 
ordering, although many implement stricter orderings for simplicity. For more on the 
Xtensa memory order semantics, see "Multiprocessor Synchronization Option" on page 
74.

However, some load and store instructions are executed not just to read and write stor-
age, but to cause some side effects on some other part of the system (for example, 
another processor or an I/O device). In C and C++, such variables must be declared 
volatile. Loads and stores to such locations must be executed in program order. The 
Xtensa ISA therefore provides an instruction that can be used to give program ordering 
of load and store memory accesses.

The MEMW instruction causes all memory and cache accesses (loads, stores, acquires, 
releases, prefetches, and cache operations, but not instruction fetches) before itself in 
program order to access memory before all memory and cache accesses (but not in-
struction fetches) after. At least one MEMW should be executed in between every load or 
store to a volatile variable. The Multiprocessor Synchronization Option provides 
some additional instructions that also affect memory ordering in a more focused fashion. 
MEMW has broader applications than these other instructions (for example, when reading 
and writing device registers), but it also may affect performance more than the synchro-
nization instructions.

The EXTW instruction is similar to MEMW, but it separates all external effects of instruc-
tions before the EXTW in program order from all external effects of instructions after the 
EXTW in program order. EXTW is a superset of MEMW, and includes memory accesses in 
what it orders.

Table 3–14 shows the memory ordering instructions in the Core Architecture.

1. Kourosh Gharachorloo, Dan Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and John Hennessy, “Memory consistency and event order-
ing in scalable shared-memory multiprocessors,” Proceedings of the 17th Annual International Symposium on Computer Architecture, pages 15-
26, May 1990.

Table 3–14.  Memory Order Instructions 
Instruction Format Definition
MEMW RRR Order memory accesses before with memory access after
EXTW RRR Order all external effects before with all external effects after
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3.8.4 Jump and Call Instructions

The unconditional branch instruction, J, has a longer range (PC-relative) than condition-
al branches. Calls have a slightly longer range because they target 32-bit aligned 
addresses. In addition, jump and call indirect instructions provide support for case 
dispatch, function variables, and dynamic linking. 

Table 3–15 shows the jump and call instructions.

3.8.5 Conditional Branch Instructions

The branch instructions in Table 3–16 compare a register operand against zero, an im-
mediate, or a second register value and conditional branch based on the result of the 
comparison. Compound compare and branch instructions improve code density and 
performance compared to other ISAs. All branches are PC-relative; the immediate field 
contains the difference between the target PC and the current PC plus four. The use of a 
PC-relative offset of minus three to zero is illegal and reserved for future use.

Table 3–15.  Jump and Call Instructions 
Instruction Format Definition
CALL0 CALL Call subroutine, PC-relative
CALLX0 CALLX Call subroutine, address in register 
J CALL Unconditional jump, PC-relative
JX CALLX Unconditional jump, address in register

RET
CALLX Subroutine return—jump to return address. Used to return from a routine 

called by CALL0/CALLX0.

Table 3–16.  Conditional Branch Instructions 
Instruction Format Definition
BEQZ BRI12 Branch if equal to zero
BNEZ BRI12 Branch if not equal to zero
BGEZ BRI12 Branch if greater than or equal to zero
BLTZ BRI12 Branch if less than zero
BEQI BRI8 Branch if equal immediate1

BNEI BRI8 Branch if not equal immediate1

BGEI BRI8 Branch if greater than or equal immediate1

BLTI BRI8 Branch if less than immediate1

BGEUI BRI8 Branch if greater than or equal unsigned immediate2

1. See Table 3–17 for encoding of signed immediate constants.
2. See Table 3–18 for encoding of unsigned immediate constants.
40 Xtensa Instruction Set Architecture (ISA) Reference Manual



Chapter 3. Core Architecture
The encodings for the branch immediate constant (b4const) field and the branch 
unsigned immediate constant (b4constu) fields, shown in Table 3–17 and Table 3–18, 
specify one of the sixteen most frequent compare immediates for each type of constant. 

BLTUI BRI8 Branch if less than unsigned immediate2

BBCI RRI8 Branch if bit clear immediate
BBSI RRI8 Branch if bit set immediate
BEQ RRI8 Branch if equal
BNE RRI8 Branch if not equal
BGE RRI8 Branch if greater than or equal
BLT RRI8 Branch if less than
BGEU RRI8 Branch if greater than or equal unsigned
BLTU RRI8 Branch if less than Unsigned
BANY RRI8 Branch if any of masked bits set
BNONE RRI8 Branch if none of masked bits set (All Clear)
BALL RRI8 Branch if all of masked bits set
BNALL RRI8 Branch if not all of masked bits set
BBC RRI8 Branch if bit clear
BBS RRI8 Branch if bit set

Table 3–17.  Branch Immediate (b4const) Encodings 
Encoding Decimal Value of Immediate Hex Value of Immediate

0 -1 32’hFFFFFFFF
1 1 32’h00000001
2 2 32’h00000002
3 3 32’h00000003
4 4 32’h00000004
5 5 32’h00000005
6 6 32’h00000006
7 7 32’h00000007
8 8 32’h00000008
9 10 32’h0000000A

10 12 32’h0000000C

Table 3–16.  Conditional Branch Instructions (continued)
Instruction Format Definition

1. See Table 3–17 for encoding of signed immediate constants.
2. See Table 3–18 for encoding of unsigned immediate constants.
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3.8.6 Move Instructions

MOVI sets a register to a constant encoded in the instruction. The conditional move 
instructions shown in Table 3–19 are used for branch avoidance.

11 16 32’h00000010
12 32 32’h00000020
13 64 32’h00000040
14 128 32’h00000080
15 256 32’h00000100

Table 3–18.  Branch Unsigned Immediate (b4constu) Encodings 
Encoding Decimal Value of Immediate Hex Value of Immediate

0 32768 32’h00008000
1 65536 32’h00010000
2 2 32’h00000002
3 3 32’h00000003
4 4 32’h00000004
5 5 32’h00000005
6 6 32’h00000006
7 7 32’h00000007
8 8 32’h00000008
9 10 32’h0000000A

10 12 32’h0000000C
11 16 32’h00000010
12 32 32’h00000020
13 64 32’h00000040
14 128 32’h00000080
15 256 32’h00000100

Table 3–17.  Branch Immediate (b4const) Encodings (continued)
Encoding Decimal Value of Immediate Hex Value of Immediate
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3.8.7 Arithmetic Instructions

The arithmetic instructions that Table 3–20 lists include add and subtract with a small 
shift for address calculations and for synthesizing constant multiplies. The ADDMI in-
struction is included for extending the range of load and store instructions.

Table 3–19.  Move Instructions 
Instruction Format Definition
MOVI RRI8 Load register with 12-bit signed constant
MOVEQZ RRR Conditional move if zero
MOVNEZ RRR Conditional move if non-zero
MOVLTZ RRR Conditional move if less than zero
MOVGEZ RRR Conditional move if greater than or equal to zero

Table 3–20.  Arithmetic Instructions 
Instruction Format Definition

ADD
RRR Add two registers

AR[r] ← AR[s] + AR[t]

ADDX2
RRR Add register to register shifted by 1

AR[r] ← (AR[s]30..0 || 0) + AR[t]

ADDX4
RRR Add register to register shifted by 2

AR[r] ← (AR[s]29..0 || 02) + AR[t]

ADDX8
RRR Add register to register shifted by 3

AR[r] ← (AR[s]28..0 || 03) + AR[t]

SUB
RRR Subtract two registers

AR[r] ← AR[s] − AR[t]

SUBX2
RRR Subtract register from register shifted by 1

AR[r] ← (AR[s]30..0 || 0) − AR[t]

SUBX4
RRR Subtract register from register shifted by 2

AR[r] ← (AR[s]29..0 || 02) − AR[t]

SUBX8
RRR Subtract register from register shifted by 3

AR[r] ← (AR[s]28..0 || 03) − AR[t]

NEG
RRR Negate

AR[r] ← 0 − AR[t]
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3.8.8 Bitwise Logical Instructions

The bitwise logical instructions in Table 3–21 provide a core set from which other logi-
cals can be synthesized. Immediate forms of these instructions are not provided be-
cause the immediate would be only four bits.

3.8.9 Shift Instructions

The shift instructions in Table 3–22 provide a rich set of operations while avoiding critical 
timing paths. See Section 3.3.2 on page 25 for more information.

ABS
RRR Absolute value

AR[r] ← if AR[s]31 then 0 − AR[s] else AR[s]

ADDI
RRI8 Add signed constant to register

AR[t] ← AR[s] + (imm8724||imm8)

ADDMI
RRI8 Add signed constant shifted by 8 to register

AR[t] ← AR[s] + (imm8716||imm8||08)

Table 3–21.  Bitwise Logical Instructions 
Instruction Format Definition

AND
RRR Bitwise logical AND

AR[r] ← AR[s] and AR[t]

OR
RRR Bitwise logical OR

AR[r] ← AR[s] or AR[t]

XOR
RRR Bitwise logical exclusive OR

AR[r] ← AR[s] xor AR[t]

Table 3–22.  Shift Instructions 
Instruction Format Definition

EXTUI

RRR Extract unsigned field immediate
Shifts right by 0..31 and ANDs with a mask of 1..16 ones
The operation of this instruction when the number of mask bits exceeds the number of 
significant bits remaining after the shift is undefined and reserved for future use.

SLLI
RRR Shift left logical immediate by 1..31 bit positions (see page 525 for encoding of the 

immediate value).

SRLI
RRR Shift right logical immediate by 0..15 bit positions

There is no SRLI for shifts ≥ 16; use EXTUI instead.
SRAI RRR Shift right arithmetic immediate by 0..31 bit positions

Table 3–20.  Arithmetic Instructions (continued)
Instruction Format Definition
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3.8.10 Processor Control Instructions

Table 3–23 contains processor control instructions. The RSR.*, WSR.*, and XSR.* 
instructions read, write, and exchange Special Registers for both the Core Architecture 
and the architectural options, as detailed in Table 5–128 on page 209. They save and 
restore context, process interrupts and exceptions, and control address translation and 
attributes. The XSR.* instruction reads and writes both the Special Register, and 
AR[t]. It combines the RSR.* and WSR.* operations to exchange the Special Register 
with AR[t]. The XSR.* instruction is not present in T1030 and earlier processors.

The xSYNC instructions synchronize Special Register writes and their uses. See 
Chapter 5 for more information on how xSYNC instructions are used. These synchroni-
zation instructions are separate from the synchronization instructions used for multipro-
cessors, which are described in Section 4.3.12 on page 74.

On some Xtensa implementations the latency of RSR is greater than one cycle, and so it 
is advantageous to schedule uses of the RSR result away from the RSR to avoid an 
interlock.

The point at which WSR.* or XSR.* to most Special Registers affects subsequent in-
structions is not defined (SAR and ACC are exceptions). In these cases, Table 5–128 on 
page 209 explains how to ensure the effects are seen by a particular point in the instruc-
tion stream (typically involving the use of one of the ISYNC, RSYNC, ESYNC, or DSYNC 

SRC
RRR Shift right combined (a funnel shift with shift amount from SAR)

The two source registers are catenated, shifted, and the least significant 32 bits 
returned.

SRA RRR Shift right arithmetic (shift amount from SAR)

SLL
RRR Shift left logical

(Funnel shift AR[s] and 0 by shift amount from SAR)

SRL
RRR Shift right logical

(Funnel shift 0 and AR[s] by shift amount from SAR)

SSA8B
RRR Set shift amount register (SAR) for big-endian byte align

The t field must be zero.
SSA8L RRR Set shift amount register (SAR) for little-endian byte align

SSR
RRR Set shift amount register (SAR) for shift right logical

This instruction differs from WSR to SAR in that only the five least significant bits of the 
register are used.

SSL RRR Set shift amount register (SAR) for shift left logical
SSAI RRR Set shift amount register (SAR) immediate

Table 3–22.  Shift Instructions (continued)
Instruction Format Definition
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instructions). A WSR.* or XSR.* followed by a RSR.* of the same register must be sep-
arated by an ESYNC instruction to guarantee the value written is read back. A WSR.PS or 
XSR.PS followed by a RSIL also requires an ESYNC instruction.

Table 3–23.  Processor Control Instructions 
Instruction Format Definition
RSR RSR Read Special Register
WSR RSR Write Special Register

XSR

RSR Exchange Special Register
(combined RSR and WSR)
Not present in T1030 and earlier processors

ISYNC
RRR Instruction fetch synchronize: Waits for all previously fetched load, store, cache, and 

special register write instructions that affect instruction fetch to be performed before 
fetching the next instruction.

RSYNC
RRR Instruction register synchronize: Waits for all previously fetched WSR and XSR 

instructions to be performed before interpreting the register fields of the next 
instruction. This operation is also performed as part of ISYNC.

ESYNC
RRR Register value synchronize: Waits for all previously fetched WSR and XSR instructions 

to be performed before the next instruction uses any register values. This operation is 
also performed as part of ISYNC and RSYNC.

DSYNC
RRR Load/store synchronize: Waits for all previously fetched WSR and XSR instructions to 

be performed before interpreting the virtual address of the next load or store 
instruction. This operation is also performed as part of ISYNC, RSYNC, and ESYNC.

NOP RRR No operation
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4. Architectural Options

This chapter defines the Xtensa ISA options. Each option adds some associated config-
uration resources and capabilities. Some options are dependent on the implementation 
of other options. These interdependencies, if any, are listed as Prerequisites at the be-
ginning of the description of each option. The additional parameters required to define 
the option, the new state and instructions added by the option, and any other new fea-
tures (such as exceptions) added by the option are listed and the operation of the option 
is described.

4.1 Overview of Options

Section 4.2 provides a synopsis of the Core Architecture (covered in more detail in 
Chapter 3) in a format similar to the format used for the options. The Instruction Set op-
tions available with an Xtensa processor are listed in five groups below.

"Options for Additional Instructions" on page 53 lists options whose primary function is 
to add new instructions to the processor’s instruction set, including:

The Code Density Option on page 53 adds 16-bit encodings of the most frequently 
used 24-bit instructions for higher code density.
The Loop Option on page 54 adds a “zero overhead loop,” which requires neither 
the extra instruction for a branch at the end of a loop nor the additional delay slots 
that would result from the taken branch. A few fixed cycles of overhead mean that 
each iteration of the loop pays no cost for the loop branch.
The Extended L32R Option on page 56 allows an additional choice in the address-
ing mode of the L32R instruction.
The 16-bit Integer Multiply Option on page 57 adds signed and unsigned 16x16 
multiplication instructions that produce 32-bit results.
The 32-bit Integer Multiply Option on page 58 adds signed and unsigned 32x32 
multiplication instructions that produce high and low parts of a 64-bit result.
The 32-bit Integer Divide Option on page 59 implements signed and unsigned 32-
bit division and remainder instructions.
The MAC16 Option on page 60 adds multiply-accumulate functions that are useful 
in digital signal processing (DSP).
The Miscellaneous Operations Option on page 62 provides a series of instruc-
tions useful for some applications, but which are not necessary for others. By mak-
ing these optional, the Xtensa architecture allows the designer to choose only those 
additional instructions that benefit the application.
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The Coprocessor Option on page 63 allows the grouping of certain states in the 
processor and adds an enable bit, which allows for lazy context switching.
The Boolean Option on page 65 adds a set of Boolean registers, which can be set 
and cleared by user instructions and that can be used as branch conditions.
The Floating-Point Coprocessor Option on page 67 adds a floating-point unit for 
single precision floating point.
The Multiprocessor Synchronization Option on page 74 adds acquire and re-
lease instructions with specific memory ordering relationships to the other Xtensa 
memory access instructions.
The Conditional Store Option on page 77 adds a compare and swap type atomic 
operation to the instruction set.

"Options for Interrupts and Exceptions" on page 82 lists options whose primary function 
is to add and control exceptions and interrupts, including:

The Exception Option on page 82 adds the basic functions needed for the proces-
sor to take exceptions.
The Relocatable Vector Option on page 98 adds the ability for the exception vec-
tors to be relocated at run time.
The Unaligned Exception Option on page 99 adds an exception for memory ac-
cesses that are not aligned by their own size. They may then be emulated in soft-
ware.
The Interrupt Option on page 100 builds upon the Exception Option to add a flexi-
ble software prioritized interrupt system.
The High-Priority Interrupt Option on page 106 adds a hardware prioritized inter-
rupt system for higher performance.
The Timer Interrupt Option on page 110 adds timers and interrupts, which are 
caused when the timer expires.

"Options for Local Memory" on page 111 lists options whose primary function is to add 
different kinds of memory, such as RAMs, ROMs, or caches to the processor, including:

The Instruction Cache Option on page 115 adds an interface for a direct-mapped 
or set-associative instruction cache.
The Instruction Cache Test Option on page 116 adds instructions to access the in-
struction cache tag and data.
The Instruction Cache Index Lock Option on page 117 adds per-index locking to 
the instruction cache.
The Data Cache Option on page 118 adds an interface for a direct-mapped or set-
associative data cache.
The Data Cache Test Option on page 121 adds instructions to access the data 
cache tag.
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The Data Cache Index Lock Option on page 122 adds per-index locking to the 
data cache.
The Instruction RAM Option on page 124 adds an interface for a local instruction 
memory.
The Instruction ROM Option on page 125 adds an interface for a local instruction 
Read Only Memory.
The Data RAM Option on page 126 adds an interface for a local data memory.
The Data ROM Option on page 126 adds an interface for a local data read-only 
memory.
The XLMI Option on page 127 adds an interface with the timing of the local memory 
interfaces, but with a full enough signal set to support non-memory devices.
The Hardware Alignment Option on page 128 adds the ability for the hardware to 
handle unaligned accesses to data memory.
The Memory ECC/Parity Option on page 128 provides the ability to add parity or 
ECC to cache and local memories.

"Options for Memory Protection and Translation" on page 138 lists options whose prima-
ry function is to control access to and manage memory, including:

The Region Protection Option on page 150 adds protection on memory in eight 
segments.
The Region Translation Option on page 156 adds protection on memory in eight 
segments and allows translations from one segment to another.
The MMU Option on page 158 adds full paging virtual memory management hard-
ware.

"Options for Other Purposes" on page 179 lists options that do not fall conveniently into 
one of the other groups, including:

The Windowed Register Option on page 180 adds additional physical AR regis-
ters and a mapping mechanism, which together lead to smaller code size and higher 
performance.
The Processor Interface Option on page 194 adds a bus interface used by memo-
ry accesses, which are to locations other than local memories. It is used for cache 
misses for cacheable addresses as well as for cache bypass memory accesses.
The Miscellaneous Special Registers Option on page 195 provides one to four 
scratch registers within the processor readable and writable by RSR, WSR, and XSR, 
which may be used for application-specific exceptions and interrupt processing 
tasks.
The Thread Pointer Option on page 196 provides a Special Register that may be 
used for a thread pointer.
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The Processor ID Option on page 196 adds a register that software can use to dis-
tinguish which of several processors it is running on.
The Debug Option on page 197 adds instructions-counting and breakpoint excep-
tions for debugging by software or external hardware.
The Trace Port Option on page 203 architectural features for supporting hardware 
tracing of the processor.

The functionality of a fairly complete micro-controller is provided by enabling the Code 
Density Option, the Exception Option, the Interrupt Option, the High-Priority Interrupt 
Option, the Timer Interrupt Option, the Debug Option, and the Windowed Register Op-
tion. 

The primary reason to disable the Code Density Option (16-bit instructions) is to provide 
maximum opcode space for extensions. The primary reason to disable the other options 
listed above is reduce the processor core area.

The choice of Cache, RAM, or ROM Options for instruction and data depends on the 
characteristics of the application. RAM is not as flexible as Cache, but it requires slightly 
less area because tags are not required. RAM may also be desirable when performance 
predictability is required. ROM is even less flexible than RAM, but avoids the need to 
load the memory and offers some protection from program errors and tampering.

4.2 Core Architecture

The Core Architecture is not an option, but rather a minimum base of processor state 
and instructions, which allows system software and compiled code to run on all Xtensa 
implementations. There are no prerequisites or incompatible options, but the tables nor-
mally used to show option additions are used here to give the base set. Table 4–24 
through Table 4–26 show Core Architecture processor configurations, processor state, 
and instructions.

Table 4–24.  Core Architecture Processor-Configurations 
Parameter Description Valid Values

msbFirst

Byte order for memory accesses 0 or 1
0 → Little-endian (least significant bit first)
1 → Big-endian (most significant bit first)
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er
Table 4–25.  Core Architecture Processor-State 

Register 
Mnemonic Quantity Width (bits) Register Name R/W

Special 
Register 
Number1

AR 16 32 Address register file R/W —
PC 1 32 Program counter — —
SAR 1 6 Shift amount register R/W 3
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 3–23 on page 46.

Table 4–26.  Core Architecture Instructions 
Instruction1 Format Definition
ABS RRR Absolute value
ADD RRR Add two registers
ADDI RRI8 Add a register and an 8-bit immediate
ADDMI RRI8 Add a register and a shifted 8-bit immediate
ADDX2/4/8 RRR Add two registers with one of them shifted left by one/two/three
AND RRR Bitwise AND of two registers
BALL/BANY RRI8 Branch if all/any bits specified by a mask in one register are set in another regist
BBC/BBS RRI8 Branch if the bit specified by another register is clear/set
BBCI/BBSI RRI8 Branch if the bit specified by an immediate is clear/set
BEQ RRI8 Branch if a register equals another register
BEQI RRI8 Branch if a register equals an encoded constant
BEQZ BRI12 Branch if a register equals zero
BGE RRI8 Branch if one register is greater than or equal to a register
BGEI RRI8 Branch if one register is greater than or equal to an encoded constant
BGEU RRI8 Branch if one register is greater or equal to a register as unsigned
BGEUI BRI8 Branch if one register is greater or equal to an encoded constant as unsigned
BGEZ BRI12 Branch if a register is greater than or equal to zero
BLT RRI8 Branch if one register is less than a register
BLTI BRI8 Branch if one register is less than an encoded constant
BLTU RRI8 Branch if one register is less than a register as unsigned
BLTUI RRI8 Branch if one register is less than an encoded constant as unsigned
BLTZ BRI12 Branch if a register is less than zero
1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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n)
BNALL/BNONE
RRI8 Branch if some/all bits specified by a mask in a register are clear in another 

register
BNE RRI8 Branch if a register does not equal a register
BNEI RRI8 Branch if a register does not equal an encoded constant
BNEZ BRI12 Branch if a register does not equal zero
CALL0 CALL Call subroutine at PC plus offset, place return address in A0
CALLX0 CALLX Call subroutine register specified location, place return address in A0
DSYNC/ESYNC RRR Wait for data memory/execution related changes to resolve
EXTUI RRR Extract field specified by immediates from a register
EXTW RRR Wait for any possible external ordering requirement (added in RA-2004.1)
ISYNC RRR Wait for instruction fetch related changes to resolve
J CALL Jump to PC plus offset
JX CALLX Jump to register specified location
L8UI RRI8 Load zero extended byte
L16SI/L16UI RRI8 Load sign/zero extended 16-bit quantity
L32I RRI8 Load 32-bit quantity
L32R RI16 Load literal at offset from PC (or from LITBASE with the Extended L32R Optio
MEMW RRR Wait for any possible memory ordering requirement
MOVEQZ RRR Move register if the contents of a register is zero
MOVGEZ RRR Move register if the contents of a register is greater than or equal to zero
MOVI RRI8 Move a 12-bit immediate to a register
MOVLTZ RRR Move register if the contents of a register is less than zero
MOVNEZ RRR Move register if the contents of a register is not zero
NEG RRR Negate a register
NOP RRR No operation (added as a full instruction in RA-2004.1)
OR RRR Bitwise OR two registers
RET CALLX Subroutine return through A0
RSR.* RSR Read a Special Register
RSYNC RRR Wait for dispatch related changes to resolve
S8I/S16I/S32I RRI8 Store byte/16-bit quantity/32-bit quantity
SLL/SLLI RRR Shift left logical by SAR/immediate
SRA/SRAI RRR Shift right arithmetic by SAR/immediate
SRC RRR Shift right combined by SAR with two registers as input and one as output

Table 4–26.  Core Architecture Instructions (continued)
Instruction1 Format Definition

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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4.3 Options for Additional Instructions

The options in this section have the primary function of adding new instructions to the 
processor’s instruction set. The new instructions cover a variety of purposes including 
new architectural capabilities, higher performance on existing capabilities, and smaller 
code.

4.3.1 Code Density Option

This option adds 16-bit encodings of the most frequently used 24-bit instructions. When 
a 24-bit instruction can be encoded into a 16-bit form, the code-size savings is signifi-
cant. 

Prerequisites: None
Incompatible options: None
Compatibility note: The additions made by this option were once considered part of 
the core architecture, thus compatibility with binaries for previous hardware might 
require the use of this option. Many available third-party software packages includ-
ing some currently supported operating systems require the Code Density Option.

4.3.1.1  Code Density Option Architectural Additions

Table 4–27 shows this option’s architectural additions. 

SRL/SRLI RRR Shift right logical by SAR/immediate

SSA8B/SSA8L
RRR Use low 2-bits of address register to prepare SAR for SRC assuming big/little 

endian
SSAI RRR Set SAR to immediate value
SSL/SSR RRR Set SAR from register for left/right shift
SUB RRR Subtract two registers
SUBX2/4/8 RRR Subtract two registers with the un-negated one shifted left by one/two/three
WSR.* RSR Write a special register
XOR RRR Bitwise XOR two registers
XSR.* RRR Read and write a special register in an exchange (added in T1040)

Table 4–26.  Core Architecture Instructions (continued)
Instruction1 Format Definition

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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4.3.1.2  Branches

For some implementations, branches to an instruction that crosses a 32-bit memory 
boundary may suffer a small performance penalty. The compiler (or assembler) is ex-
pected to align performance-critical branch targets such that their byte address is 0 mod 
4, 1 mod 4, or for 16-bit instructions, 2 mod 4. This can be accomplished either by con-
verting some previous 16-bit-encoded instructions back to their 24-bit form, or by insert-
ing a 16-bit NOP.N. 

4.3.2 Loop Option

The Loop Option adds the ability for the processor to execute a zero-overhead loop 
where the number of iterations (not counting an early exit) can be determined prior to 
entering the loop. This capability is useful in digital signal processing applications where 
the overhead of a branch in a heavily used loop is unacceptable. A single loop instruc-
tion defines both the beginning and end of a loop, as well as a count of how many times 
the loop will execute.

Prerequisites: None
Incompatible options: None

Table 4–27.  Code Density Option Instruction Additions 
Instruction1 Format Definition
ADD.N RRRN Add two registers (same as ADD instruction but with a 16-bit encoding).
ADDI.N RRRN Add register and immediate (-1 and 1..15).
BEQZ.N RI16 Branch if register is zero with a 6-bit unsigned offset (forward only).
BNEZ.N RI16 Branch if register is non-zero with a 6-bit unsigned offset (forward only).
BREAK.N2 RRRN This instruction is the same as BREAK but with a 16-bit encoding.
L32I.N RRRN Load 32 bits, 4-bit offset
MOV.N RRRN Narrow move
MOVI.N RI7 Load register with immediate (-32..95).
NOP.N RRRN This instruction performs no operation. It is typically used for instruction alignment.
RET.N RRRN The same as RET but with a 16-bit encoding.
RETW.N3 RRRN The same as RETW but with a 16-bit encoding.
S32I.N RRRN Store 32 bits, 4-bit offset
1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
2. Exists only if the Debug Option described in Section 4.7.6 on page 197 is configured.
3. Exists only if the Windowed Register Option described in Section 4.7.1 on page 180 is configured.
54 Xtensa Instruction Set Architecture (ISA) Reference Manual



Chapter 4. Architectural Options
Compatibility note: The additions made by this option were once considered part of 
the core architecture, thus compatibility with binaries for previous hardware might 
require the use of this option. Many available third-party software packages includ-
ing some currently supported operating systems require the Loop Option.

4.3.2.1  Loop Option Architectural Additions

Table 4–28 and Table 4–29 show this option’s architectural additions. 

LBEG and LEND are undefined after processor reset. LCOUNT is initialized to zero after 
processor reset.

4.3.2.2  Restrictions on Loops

There is a restriction on instruction alignment for zero-overhead loops. The first instruc-
tion after the LOOP instruction, which begins at the address written to LBEG by the LOOP 
instruction, must be entirely contained within a naturally aligned, power of two sized unit 
of a particular size. That size is the next larger power of two equal to or greater than the 
instruction length, but not less than 4 bytes. Thus a 16-bit instruction, if it is the first in a 
loop, may be at 0 mod 4, 1 mod 4, or 2 mod 4. A 24-bit instruction, if it is the first in a 
loop, may be at 0 mod 4 or at 1 mod 4. As an example of a potential larger instruction, a 
64-bit instruction must be aligned at 0 mod 8.

Table 4–28.  Loop Option Processor-State Additions 

Register 
Mnemonic Quantity Width (bits) Register Name R/W

Special 
Register 
Number1

LBEG 1 32 Loop begin R/W 0
LEND 1 32 Loop end R/W 1
LCOUNT 1 32 Loop count R/W 2
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 3–23 on page 46.

Table 4–29.  Loop Option Instruction Additions 
Instruction1 Format Definition

LOOP
BRI8 Set up a zero-overhead loop by setting LBEG, LEND, and LCOUNT special 

registers.

LOOPGTZ
BRI8 Set up a zero-overhead loop by setting LBEG, LEND, and LCOUNT special 

registers. Skip loop if LCOUNT is not positive.

LOOPNEZ
BRI8 Set up a zero-overhead loop by setting LBEG, LEND, and LCOUNT special 

registers. Skip loop if LCOUNT is zero.
1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
Xtensa Instruction Set Architecture (ISA) Reference Manual 55



Chapter 4. Architectural Options
The last instruction of the loop must not be a call, ISYNC, WAITI, or RSR.LCOUNT. If the 
last instruction of the loop is a taken branch, then the value of LCOUNT is undefined. 
Thus, a taken branch may be used to exit the loop (in which case the value of LCOUNT is 
irrelevant), but not to iterate within the loop.

4.3.2.3  Loops Disabled During Exceptions

Loops are disabled when PS.EXCM is set in Xtensa Exception Architecture 2 and above. 
This prevents program code from maliciously or accidentally setting LEND to an address 
in an exception handler and then causing the exception, thereby transitioning to Ring 0 
while retaining control of the processor.

4.3.2.4  Loopback Semantics

The processor includes the following to compute the PC of the next instruction:

if LCOUNT ≠ 0 and CLOOPENABLE and nextPC = LEND then
LCOUNT ← LCOUNT − 1
nextPC ← LBEG

endif

The semantics above have some non-obvious consequences. A taken branch to the ad-
dress in LEND does not cause a transfer to LBEG. Thus a taken branch to the LEND in-
struction can be used to exit the loop prematurely. This is why a call instruction as the 
last instruction of a loop will not do the obvious thing (the return will branch to the LEND 
address and exit the loop). To conditionally begin the next loop iteration, a branch to a 
NOP before LEND may be used.

4.3.3 Extended L32R Option

The Extended L32R Option adds functionality to the standard L32R instruction. The 
standard L32R instruction has an offset that can reach as far as 256kB below the current 
PC. In the case where an instruction RAM approaches or exceeds 256kB in size, ac-
cessing literal data becomes much more difficult. This option is intended to ease the ac-
cess to literal data by providing an optional separate literal base register.

Prerequisites: None
Incompatible options: MMU Option (page 158)

4.3.3.1  Extended L32R Option Architectural Additions

Table 4–30 shows this option’s architectural additions. 
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4.3.3.2  The Literal Base Register

The literal base (LITBASE) register contains 20 upper bits, which define the location of 
the literal base and one enable bit (En). When the enable bit is clear, the L32R instruc-
tion loads a literal at a negative offset from the PC. When the enable bit is set, the L32R 
instruction loads a literal at a negative offset from the address formed by the 20 upper 
bits of literal base and 12 lower bits of 12’h000. See the L32R instruction description in 
Chapter 6. Figure 4–7 shows the LITBASE register format.

Figure 4–7.  LITBASE Register Format

The enable bit of the literal base register is cleared after reset. The remaining bits are 
undefined after reset.

4.3.4 16-bit Integer Multiply Option

This option provides two instructions that perform 16×16 multiplication, producing a 32-
bit result. It is typically useful for digital signal processing (DSP) algorithms that require 
16 bits or less of input precision (32 bits of input precision is provided by the 32-bit Inte-
ger Multiply Option) and do not require more than 32-bit accumulation (as provided by 
the MAC16 Option). Because a 16×16 multiplier is one-fourth the area of a 32×32 multi-
plier, this option is less costly than the 32-bit Integer Multiply Option. Because it lacks an 
accumulator and data registers, it is less costly than the MAC16 Option.

Prerequisites: None
Incompatible options: None
See Also "MAC16 Option" on page 60 and "32-bit Integer Multiply Option" on page 
58

Table 4–30.  Extended L32R Option Processor-State Additions 

Register 
Mnemonic Quantity Width

(bits) Register Name R/W
Special 
Register 
Number1

LITBASE 1  21 Literal base2 R/W 5
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 3–23 on page 46.
2. See Figure 4–7 on page 57 for the format of this register.

31 12 11 1 0

Literal Base Address reserved En

20 11 1
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4.3.4.1  16-bit Integer Multiply Option Architectural Additions

Table 4–31 shows this option’s architectural additions. There are no configuration pa-
rameters associated with the MUL16 Option and no additional processor state.

4.3.5 32-bit Integer Multiply Option

This option provides instructions that implement 32-bit integer multiplication as instruc-
tions. This provides single instruction targets for the multiplication operators of program-
ming languages such as C. When this option is not enabled, the Xtensa compiler uses 
subroutine calls to implement 32-bit integer multiplication. Note that various algorithms 
may be used to implement multiplication, and some hardware implementations may be 
slower than the software implementations for some operand values. Implementations 
may allow a choice of algorithms through configuration parameters to optimize among 
area, speed, and other characteristics.

There is one sub-option within this option: Mul32High. It controls whether the MULSH 
and MULUH instructions are included or not. For some implementations, generating the 
high 32 bits of the product requires additional hardware, and so disabling this sub-option 
may reduce cost.

Prerequisites: None
Incompatible options: None
See Also: "MAC16 Option" on page 60 and "16-bit Integer Multiply Option" on page 
57

4.3.5.1  32-bit Integer Multiply Option Architectural Additions

Table 4–32 and Table 4–33 show this option’s architectural additions. This option adds 
no new processor state.

Table 4–31.  16-bit Integer Multiply Option Instruction Additions 
Instruction1 Format Definition

MUL16S
RRR Signed 16×16 multiplication of the least-significant 16 bits of AR[s] and 

AR[t], with the 32-bit product written to AR[r]

MUL16U
RRR Unsigned 16×16 multiplication of the least-significant 16 bits of AR[s] and 

AR[t], with the 32-bit product written to AR[r]
1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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4.3.6 32-bit Integer Divide Option

This option provides instructions that implement 32-bit integer division and remainder 
operations. When this option is not enabled, the Xtensa compiler uses subroutine calls 
to implement division and remainder. Note that various algorithms may be used to imple-
ment these instructions, and some hardware implementations may be slower than the 
software implementations for some operand values.

Prerequisites: None
Incompatible Options: None

4.3.6.1  32-bit Integer Divide Option Architectural Additions

Table 4–34 through Table 4–36 show this option’s architectural additions. This option 
adds no new processor state. This option does add a new exception, Integer Divide by 
Zero, which is raised when the divisor operand of a QUOS, QUOU, REMS, or REMU instruc-
tion contains zero.

Table 4–32.  32-bit Integer Multiply Option Processor-Configuration Additions 
Parameter Description Valid Values

Mul32High
Determines whether the MULSH and MULUH 
instructions are included

0 or 1

MulAlgorithm Determines the multiplication algorithm employed Implementation-dependent

Table 4–33.  32-Bit Integer Multiply Instruction Additions 
Instruction1 Format Definition

MULL RRR Multiply low 
(return least-significant 32 bits of product)

MULUH2 RRR Multiply unsigned high 
(return most-significant 32 bits of product)

MULSH2 RRR Multiply signed high 
(return most-significant 32 bits of product)

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
2. These instructions are part of the Mul32High sub-option of 32-bit Integer Multiply Option.

Table 4–34.  32-bit Integer Divide Option Processor-Configuration Additions 
Parameter Description Valid Values
DivAlgorithm Determines the division algorithm employed Implementation-dependent
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4.3.7 MAC16 Option

The MAC16 Option adds multiply-accumulate functions that are useful in DSP and other 
media-processing operations. The option adds a 40-bit accumulator (ACC), four 32-bit 
data registers (MR[n]), and 72 instructions. 

The multiplier operates on two 16-bits operands from either the address registers (AR) or 
MAC16 registers (MR). Each operand may be taken from either the low or high half of a 
register. The result of the operation is placed in the 40-bit accumulator. The MR regis-
ters and the low 32 bits and high 8 bits of the accumulator are readable and writable with 
the RSR, WSR, and XSR instructions. MR[0] and MR[1] can be used as the first multiplier 
input, and MR[2] and MR[3] can be used as the second multiplier input. Four of the 72 
added instructions can load the MR registers with 32-bit values from memory in parallel 
with multiply-accumulate operations. 

The accumulator (ACC) and data registers (MR) are undefined after reset.
Prerequisites: None
Incompatible options: None

4.3.7.1  MAC16 Option Architectural Additions

Table 4–37 and Table 4–38 show this option’s architectural additions. 

Table 4–35.  32-bit Integer Divide Option Exception Additions 
Exception Description EXCCAUSE value
IntegerDivideByZero Exception raised when divisor is zero 6

Table 4–36.  32-bit Integer Divide Option Instruction Additions 
Instruction1 Format Definition

QUOS RRR Quotient Signed 
(divide giving 32-bit quotient)

QUOU RRR Quotient Unsigned 
(divide giving 32-bit quotient)

REMS RRR 
Remainder Signed
(divide giving 32-bit remainder)

REMU RRR Remainder Unsigned 
(divide giving 32-bit remainder)

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243
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Table 4–37.  MAC16 Option Processor-State Additions 

Register 
Mnemonic Quantity Width 

(bits) Register Name R/W
Special 
Register 
Number1

ACCLO 1 32 Accumulator low R/W 16
ACCHI 1 8 Accumulator high R/W 17
MR[0]2 1 32 MAC16 register 0 (m0 in assembler) R/W 32
MR[1]2 1 32 MAC16 register 1 (m1 in assembler) R/W 33
MR[2]2 1 32 MAC16 register 2 (m2 in assembler) R/W 34
MR[3]2 1 32 MAC16 register 3 (m3 in assembler) R/W 35
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 3–23 on page 46.
2. These registers are known as MR[0..3] in hardware and as m0..3 in the software.

Table 4–38.  MAC16 Option Instruction Additions 
Instruction1, 2 Definition3

LDDEC Load MAC16 data register (MR) with auto decrement
LDINC Load MAC16 data register (MR) with auto increment
MUL.AA.qq Signed multiply of two address registers
MUL.AD.qq Signed multiply of an address register and a MAC16 data register
MUL.DA.qq Signed multiply of a MAC16 data register and an address register
MUL.DD.qq Signed multiply of two MAC16 data registers
MULA.AA.qq Signed multiply-accumulate of two address registers
MULA.AD.qq Signed multiply-accumulate of an address register and a MAC16 data register
MULA.DA.qq Signed multiply-accumulate of a MAC16 data register and an address register
MULA.DD.qq Signed multiply-accumulate of two MAC16 data registers
MULS.AA.qq Signed multiply/subtract of two address registers
MULS.AD.qq Signed multiply/subtract of an address register and a MAC16 data register
MULS.DA.qq Signed multiply/subtract of a MAC16 data register and an address register
MULS.DD.qq Signed multiply/subtract of two MAC16 data registers

MULA.DA.qq.LDDEC
Signed multiply-accumulate of a MAC16 data register and an address register, and load 
a MAC16 data register with auto decrement

MULA.DA.qq.LDINC
Signed multiply-accumulate of a MAC16 data register and an address register, and load 
a MAC16 data register with auto increment

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
2. The qq opcode parameter indicates (by HH, HL, LH, or LL) whether the operands are taken from the Low or High 16-bit half of the AR or MR 

registers. The first q represents the location of the first operand; the second q represents the location of the second operand.
3. The destination for all product and accumulate results is the MAC16 accumulator
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4.3.7.2  Use With CLAMPS Instruction

The CLAMPS instruction, implemented with the Miscellaneous Operations Option, is use-
ful in conjunction with the MAC16 Option. It allows clamping results to 16 bits before 
storing to memory. 

4.3.8 Miscellaneous Operations Option

These instructions can be individually enabled in groups to provide computational capa-
bility required by a few applications.

Prerequisites: None
Incompatible options: None

4.3.8.1  Miscellaneous Operations Option Architectural Additions

Table 4–39 and Table 4–40 show this option’s architectural additions. 

MULA.DD.qq.LDDEC
Signed multiply-accumulate of two MAC16 data registers, and load a MAC16 data 
register with auto decrement

MULA.DD.qq.LDINC
Signed multiply-accumulate of two MAC16 data registers, and load a MAC16 data 
register with auto increment

UMUL.AA.qq Unsigned multiply of two address registers

Table 4–39.  Miscellaneous Operations Option Processor-Configuration Additions 
Parameter Description Valid Values
InstructionCLAMPS Enable the signed clamp instruction: CLAMPS 0 or 1

InstructionMINMAX
Enable the minimum and maximum value instructions: MIN, 
MAX, MINU, MAXU

0 or 1

InstructionNSA
Enabled the normalization shift amount instructions: NSA, 
NSAU

0 or 1

InstructionSEXT Enable the sign extend instruction: SEXT 0 or 1

Table 4–38.  MAC16 Option Instruction Additions (continued)
Instruction1, 2 Definition3

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
2. The qq opcode parameter indicates (by HH, HL, LH, or LL) whether the operands are taken from the Low or High 16-bit half of the AR or MR 

registers. The first q represents the location of the first operand; the second q represents the location of the second operand.
3. The destination for all product and accumulate results is the MAC16 accumulator
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4.3.9 Coprocessor Option

A coprocessor is a combination of additional state, instructions and logic that operates 
on that state, including moves and the setting of Booleans for branch true/false opera-
tions. The Coprocessor Option is general in nature: it adds state that is shared by all co-

Table 4–40.  Miscellaneous Operations Instruction Additions 
Instruction1 Format Definition

CLAMPS

RRR Clamp to signed power of two range
sign ← AR[s]31
AR[r] ← if AR[s]30..(t+7) = sign24−t

then AR[s]
else sign(25−t) || (not sign)t+7

MAX
RRR Maximum value signed

AR[r] ← if AR[s] < AR[t] then AR[t] else AR[s]

MAXU

RRR Maximum value unsigned
AR[r] ← if (0||AR[s]) < (0||AR[t])

then AR[t]
else AR[s]

MIN
RRR Minimum value signed

AR[r] ← if AR[s] < AR[t] then AR[s] else AR[t]

MINU

RRR Minimum value unsigned
AR[r] ← if (0||AR[s]) < (0||AR[t])

then AR[s]
else AR[t]

NSA

RRR Normalization shift amount signed
AR[r] ← nsa1(AR[s]31, AR[s])
NSA returns the number of contiguous bits in the most significant end of 
AR[s] that are equal to the sign bit (not counting the sign bit itself), or 31 if 
AR[s] = 0 or AR[s] = -1. The result may be used as a left shift amount 
such that the result of SLL on AR[s] will have bit31 ≠ bit30 (if AR[s] ≠ 
0).

NSAU

RRR Normalization shift amount unsigned
AR[r] ← nsa1(0, AR[s])

NSAU returns the number of contiguous zero bits in the most significant end 
of AR[s], or 32 if AR[s] = 0. The result may be used as a left shift 
amount such that the result of SLL on AR[s] will have bit31 ≠ 0 (if 
AR[s] ≠ 0).

SEXT
RRR Sign extend

sign ← AR[s]t+7
AR[r] ← sign(24−t) || AR[s]t+7..0

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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processors. After the Coprocessor Option is added, specific coprocessors, such as the 
Floating-Point Coprocessor Option, can be added, along with system-specific instruc-
tions for coprocessor operations. 

Prerequisites: Exception Option (page 82)
Incompatible options: None

4.3.9.1  Coprocessor Option Architectural Additions

Table 4–41 and Table 4–42 show this option’s architectural additions.

4.3.9.2  Coprocessor Context Switch

RUR and WUR are not created by the Coprocessor Option, but rather by TIE language 
constructs. They provide a uniform way for reading and writing miscellaneous state add-
ed via the TIE language. The TIE user_register construct associates TIE state reg-
isters with RUR/WUR register numbers in 32-bit quantities. RUR reads 32 bits of TIE state 
into an address register, and WUR writes 32 bits to a TIE state register from an address 
register. The ISA does not define the result of additional bits read by RUR when fewer 
than 32 bits of TIE state are associated with the user register.

Table 4–41.  Coprocessor Option Exception Additions 

Exception Description EXCCAUSE 
value

Coprocessor0Disabled Coprocessor 0 instruction while cp0 disabled 32
Coprocessor1Disabled Coprocessor 1 instruction while cp1 disabled 33
Coprocessor2Disabled Coprocessor 2 instruction while cp2 disabled 34
Coprocessor3Disabled Coprocessor 3 instruction while cp3 disabled 35
Coprocessor4Disabled Coprocessor 4 instruction while cp4 disabled 36
Coprocessor5Disabled Coprocessor 5 instruction while cp5 disabled 37
Coprocessor6Disabled Coprocessor 6 instruction while cp6 disabled 38
Coprocessor7Disabled Coprocessor 7 instruction while cp7 disabled 39

Table 4–42.  Coprocessor Option Processor-State Additions 
Register 
Mnemonic Quantity Width 

(bits) Register Name R/W Special Register 
Number1

CPENABLE  1 8 Coprocessor enable bits R/W 224
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 3–23 on page 46.
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The TIE compiler automatically generates for each coprocessor the assembly code to 
save the state associated with a coprocessor to memory and to restore coprocessor 
state from memory. 

Tensilica reserves user register numbers for RUR and WUR in the range 192 to 255.

The CPENABLE register allows a “lazy” context switch of the coprocessor state. Any in-
struction that references coprocessor n state (not including the shared Boolean regis-
ters) when that coprocessor’s enable bit (bit n) is clear raises a  
CoprocessornDisabled exception. CPENABLE can be cleared on context switch, and 
the exception used to unload the previous task’s coprocessor state and load the current 
task’s. The appropriate CPENABLE bit is then set by the exception handler, which then 
returns to execute the coprocessor instruction. An RSYNC instruction must be executed 
after writing CPENABLE before executing any instruction that references state controlled 
by the changed bits of CPENABLE. This register is undefined after reset.

If a single instruction references state from more than one coprocessor not enabled in 
CPENABLE, then one of CoprocessornDisabled exceptions is raised. The prioritiza-
tion among multiple CoprocessornDisabled exceptions is implementation-specific.

4.3.10 Boolean Option

This option makes a set of Boolean registers available, along with branches and other 
operations that refer to them. Multiple coprocessors and other TIE language extensions 
can use this set. 

Prerequisites: None
Incompatible options: None

4.3.10.1  Boolean Option Architectural Additions

Table 4–43 and Table 4–44 show this option’s architectural additions.

Table 4–43.  Boolean Option Processor-State Additions 
Register 
Mnemonic Quantity Width

(bits) Register Name R/W Special Register 
Number1

BR2 16 1 Boolean registers R/W 4
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 3–23 on page 46.
2. This register is known as Special Register BR or as individual Boolean bits b0..15.
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4.3.10.2  Booleans

A coprocessor test or comparison produces a Boolean result. The Boolean Option pro-
vides 16 single-bit Boolean registers for storing the results of coprocessor comparisons 
for testing in conditional move and branch instructions. Boolean logic may replace 
branches in some situations. Compared to condition codes used by other ISAs, these 
Booleans eliminate the bottleneck of having only a single place to store comparison re-
sults. It is possible, for example, to do multiple comparisons before the comparison re-
sults are used. For Single-Instruction Multiple-Data (SIMD) operations, Booleans pro-
vide up to 16 simultaneous compare results and conditionals.

Boolean-producing instructions generate only one sense of the condition (for example, = 
but not ≠); all Boolean uses allow for complementing of the Boolean. Multiple Booleans 
may be combined into a single Boolean using the ANY4, ALL4, and so forth instructions. 
For example, this is useful after a SIMD comparison to test if any or all of the elements 
satisfy the test, such as testing if any byte of a word is zero. ANY2 and ALL2 instructions 
are not provided; ANDB and ORB provide this functionality given bs+0 and bs+1 as argu-
ments.

Table 4–44.  Boolean Option Instruction Additions 
Instruction1 Format Definition

ALL4
RRR 4-Boolean and reduction

(result is 1 if all of the 4 Booleans are true)

ALL8
RRR 8-Boolean and reduction

(result is 1 if all of the 8 Booleans are true)
ANDB RRR Boolean and
ANDBC RRR Boolean and with complement

ANY4
RRR 4-Boolean or reduction

(result is 1 if any of the 4 Booleans is true)

ANY8
RRR 8-Boolean or reduction

(result is 1 if any of the 8 Booleans is true)
BF RRI8 Branch if Boolean false
BT RRI8 Branch if Boolean true
MOVF RRR Conditional move if false
MOVT RRR Conditional move if true
ORB RRR Boolean or
ORBC RRR Boolean or with complement
XORB RRR Boolean exclusive or
1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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The Boolean registers are undefined after reset.

The Boolean registers are accessible from C using the xtbool, xtbool2, xtbool4, 
xtbool8, and xtbool16 data types. See the Xtensa C and C++ Compiler User’s 
Guide for details.

4.3.11 Floating-Point Coprocessor Option

The Floating-Point Coprocessor Option adds the logic and architectural components 
needed for IEEE754 single-precision floating-point operations. These operations are 
useful for DSP that requires >16 bits of precision, such as audio compression and de-
compression. Also, DSP algorithms for less precise data are more easily coded using 
floating-point, and good performance is obtainable when programming in languages 
such as C.

Prerequisites: Coprocessor Option (page 63) and Boolean Option (page 65)
Incompatible options: None

4.3.11.1  Floating-Point Coprocessor Option Architectural Additions

Table 4–45 through Table 4–46 show this option’s architectural additions. 

Table 4–45.  Floating-Point Coprocessor Option Processor-State Additions 
Register 
Mnemonic Quantity Width (bits) Register Name R/W Register 

Number1

FR 16 32 Floating-point register R/W -
FCR 1 32 Floating-point control register R/W User 232
FSR 1 32 Floating-point status register R/W User 233
1.  See Table 3–23 on page 46.

Table 4–46.  Floating-Point Coprocessor Option Instruction Additions 
Instruction1 Format Definition
ABS.S RRR Single-precision absolute value
ADD.S RRR Single-precision add
CEIL.S RRR Single-precision floating-point to signed integer conversion with round to +∞

FLOAT.S RRR Signed integer to single-precision floating-point conversion (current rounding mode)
FLOOR.S RRR Single-precision floating-point to signed integer conversion with round to -∞
LSI RRI8 Load single-precision immediate
LSIU RRI8 Load single-precision immediate with base update
1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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LSX RRR Load single-precision indexed
LSXU RRR Load single-precision indexed with base update
MADD.S RRR Single-precision multiply-add
MOV.S RRR Single-precision move
MOVEQZ.S RRR Single-precision move if equal to zero
MOVF.S RRR Single-precision move if Boolean condition false
MOVGEZ.S RRR Single-precision move if greater than or equal to zero
MOVLTZ.S RRR Single-precision move if less than zero
MOVNEZ.S RRR Single-precision move if not equal to zero
MOVT.S RRR Single-precision move if Boolean condition true
MSUB.S RRR Single-precision multiply-subtract
MUL.S RRR Single-precision multiply
NEG.S RRR Single-precision negate
OEQ.S RRR Single-precision compare equal
OLE.S RRR Single-precision compare less than or equal
OLT.S RRR Single-precision compare less than
RFR RRR Read floating-point register (FR to AR)
ROUND.S RRR Single-precision floating-point to signed integer conversion with round to nearest
SSI RRI8 Store single-precision immediate
SSIU RRI8 Store single-precision immediate with base update
SSX RRR Store single-precision indexed
SSXU RRR Store single-precision indexed with base update
SUB.S RRR Single-precision subtract
TRUNC.S RRR Single-precision floating-point to signed integer conversion with round to 0
UEQ.S RRR Single-precision compare unordered or equal
UFLOAT.S RRR Unsigned integer to single-precision floating-point conversion (current rounding mode)
ULE.S RRR Single-precision compare unordered or less than or equal
ULT.S RRR Single-precision compare unordered or less than
UN.S RRR Single-precision compare unordered
UTRUNC.S RRR Single-precision floating-point to unsigned integer conversion with round to 0
WFR RRR Write floating-point register (AR to FR)

Table 4–46.  Floating-Point Coprocessor Option Instruction Additions (continued)
Instruction1 Format Definition

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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4.3.11.2  Floating-Point Representation

The primary floating-point data type is IEEE754 single-precision: 

The other data format is a signed, 32-bit integer used by the FLOAT.S, TRUNC.S, 
ROUND.S, FLOOR.S, and CEIL.S instructions.

IEEE754 uses a sign-magnitude format, with a 1-bit sign, an 8-bit exponent with bias 
127, and a 24-bit significand formed from 23 stored bits representing the binary digits to 
the right the binary point, and an implicit bit to the left of the binary point (0 if exponent is 
zero, 1 if exponent is non-zero). Thus, the value of the number is:

(−1)s × 2exp−127 × implicit.fraction

Thus, the representation for 1.0 is 0x3F800000, with a sign of 0, exp of 127, a zero frac-
tion, and an implicit 1 to the left of the binary point.

The Xtensa ISA includes IEEE754 signed-zero, infinity, quiet NaN, and sub-normal rep-
resentations and processing rules. The ISA does not include IEEE754 signaling NaNs or 
exceptions. Integer ⇔ floating-point conversions include a binary scale factor to make 
conversion into and out of fixed-point formats faster. 

4.3.11.3  Floating-Point State

Table 4–45 summarizes the processor state added by the floating-point coprocessor. 
The FR register file consists of 16 registers of 32 bits each and is used for all data com-
putation. Load and store instructions transfer data between the FR’s and memory. The 
FCR register file has one field that may be changed at run-time to control the operation 
of various instructions. Table 4–47 lists FCR fields and their associated meanings. The 
format of FCR is

31 30 23 22 0

s exp fraction

1 8 23

31 12 11 7 6 5 4 3 2 1 0

reserved ignore V Z O U I RM

20 5 1 1 1 1 1 2
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The FSR register file provides the status flags required by IEEE754. These flags are set 
by any operation that raises a non-enabled exception (see Section 4.3.11.4). Enabled 
exceptions abort the operation with a floating-point exception and the flags are not writ-
ten:

Table 4–47.  FCR fields 
FCR Field Meaning
RM Rounding mode

0 → round to nearest
1 → round toward 0 (TRUNC)
2 → round toward +∞ (CEIL)
3 → round toward −∞ (FLOOR)

I Inexact exception enable (0 → disabled, 1 → enabled)
U Underflow exception enable (0 → disabled, 1 → enabled)
O Overflow exception enable (0 → disabled, 1 → enabled)
Z Divide-by-zero exception enable (0 → disabled, 1 → enabled)
V Invalid exception enable (0 → disabled, 1 → enabled)
ignore Reads as 0, ignored on write
reserved Reads back last value written. Non-zero values cause a floating-point exception on any 

floating-point instruction (see Section 4.3.11.4)

31 12 11 10 9 8 7 6 0

reserved V Z O U I ignore

20 1 1 1 1 1 7

Table 4–48.  FSR fields 
FSR Field Meaning
I Inexact exception flag
U Underflow exception flag
O Overflow exception flag
Z Divide-by-zero flag
V Invalid exception flag
ignore Reads as 0, ignored on write
reserved Reads back last value written. Non-zero values cause a floating-point exception on any 

floating-point instruction (see Section 4.3.11.4)
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Most architectures have a combined floating-point control and status register, instead of 
separate registers. In high-performance pipelines, this combination can compromise 
performance, as reads and writes must access all bits, even ones that are not required 
by the program. Xtensa’s FCR may be read and written without waiting for the results of 
pending floating-point operations. Writes to FCR affect subsequent floating-point opera-
tions, but there is usually little performance cost from this dependency. Only reads of 
FSR need cause a significant pipeline interlock.

FCR and FSR are organized to allow implementation with a single 32-bit physical regis-
ter. The separate register numbers affect only the bits read and written of this underlying 
physical register. It is also possible for software to bitwise logical OR the RUR’s of FCR 
and FSR to create the appearance of a single register and to write this combined value 
to FCR and FSR.

The reserved bits of FCR and FSR must store the last value written, but if that value is 
non-zero, this causes all floating-point operations to raise a floating-point exception. 
This allows future extensions to define additional control values that if used in earlier im-
plementations, can be emulated in software.

4.3.11.4  Floating-Point Exceptions

Current implementations neither raise exceptions enabled by FCR bits nor set flag bits in 
FSR. They also do not raise an exception when one of the reserved bits of FCR or FSR is 
non-zero.

4.3.11.5  Floating-Point Instructions

The floating-point instructions are defined in Table 4–49 and Table 4–50. The instruc-
tions operate on data in the floating-point register file, which consists of 16 32-bit regis-
ters.

The floating-point ISA requires a triple read-port FR register file for the MADD.S and 
MSUB.S operations. 
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Table 4–49.  Floating-Point Coprocessor Option Load/Store Instructions 
Instruction1 Format Definition

LSI
RRI8 Load single-precision immediate

vAddr ← AR[s] + (022||imm8||02)
FR[t] ← Load32(vAddr)

LSIU

RRI8 Load single-Precision Immediate with Base Update
vAddr ← AR[s] + (022||imm8||02)
FR[t] ← Load32(vAddr)
AR[s] ← vAddr

LSX
RRR Load single-Precision Indexed

vAddr ← AR[s] + AR[t]
FR[t] ← Load32(vAddr)

LSXU

RRR Load single-Precision Indexed with Base Update
vAddr ← AR[s] + AR[t]
FR[t] ← Load32(vAddr)
AR[s] ← vAddr

SSI
RRI8 Store single-Precision Immediate

vAddr ← AR[s] + (022||imm8||02)
Store32 (vAddr, FR[t])

SSIU

RRI8 Store single-Precision Immediate with Base Update
vAddr ← AR[s] + (022||imm8||02)
Store32 (vAddr, FR[t])
AR[s] ← vAddr

SSX
RRR Store single-Precision Indexed

vAddr ← AR[s] + AR[t]
Store32 (vAddr, FR[r])

SSXU

RRR Store single-Precision Indexed with Base Update
vAddr ← AR[s] + AR[t]
Store32 (vAddr, FR[r])
AR[s] ← vAddr

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243

Table 4–50.  Floating-Point Coprocessor Option Operation Instructions 
Instruction1 Format Definition

ABS.S
RRR Single-precision absolute value

FR[r] ← abss(FR[s])

ADD.S
RRR Single-precision add

FR[r] ← FR[s] +s FR[t]

CEIL.S
RRR Scale and convert single-precision to integer, round to +∞

AR[r] ← ceils(FR[s] ×s pows(2.0,t))
1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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FLOAT.S
RRR Convert signed integer to single-precision and scale

FR[r] ← floats(AR[s]) ×s pows(2.0,-t)

FLOOR.S
RRR Scale and convert single-precision to integer, round to −∞

AR[r] ← floors(FR[s] ×s pows(2.0,t))

MADD.S
RRR Single-precision multiply/add

FR[r] ← FR[r] +s (FR[s] ×s FR[t])

MOV.S
RRR Single-precision move

FR[r] ← FR[s]

MOVEQZ.S
RRR Single-precision conditional move if equal to zero

if AR[t] = 032 then FR[r] ← FR[s] endif

MOVF.S
RRR Single-precision conditional move if false

if BRt = 0 then FR[r] ← FR[s] endif

MOVGEZ.S
RRR Single-precision conditional move if greater than or equal to zero

if AR[t]31 = 0 then FR[r] ← FR[s] endif

MOVLTZ.S
RRR Single-precision conditional move if less than zero

if AR[t]31 ≠ 0 then FR[r] ← FR[s] endif

MOVNEZ.S
RRR Single-precision conditional move if not equal to zero

if AR[t] ≠ 032 then FR[r] ← FR[s] endif

MOVT.S
RRR Single-precision conditional move if true

if BRt ≠ 0 then FR[r] ← FR[s] endif

MSUB.S
RRR Single-precision multiply/subtract

FR[r] ← FR[r] −s (FR[s] ×s FR[t])

MUL.S
RRR Single-precision multiply

FR[r] ← FR[s] ×s FR[t]

NEG.S
RRR Single-precision negate

FR[r] ← −s FR[s]

OEQ.S
RRR Single-precision compare equal

BRr ← FR[s] OEQs FR[t]; 

OLE.S
RRR Single-precision compare less than or equal

BRr ← FR[s] OLEs FR[t];

OLT.S
RRR Single-precision compare less than

BRr ← FR[s] OLTs FR[t];

RFR
RRR Move from FR to AR

AR[r] ← FR[s]

ROUND.S
RRR Scale and convert single-precision to integer, round to nearest

AR[r] ← rounds(FR[s] ×s pows(2.0,t))

SUB.S
RRR Single-precision subtract

FR[r] ← FR[s] −s FR[t]

Table 4–50.  Floating-Point Coprocessor Option Operation Instructions (continued)
Instruction1 Format Definition

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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4.3.12 Multiprocessor Synchronization Option

When multiple processors are used in a system, some sort of communication and syn-
chronization between processors is required. (Note that multiprocessor synchronization 
is distinct from pipeline synchronization between instructions as represented by the 
ISYNC, RSYNC, ESYNC, and DSYNC instructions, despite the name similarity). In some 
cases, self-synchronizing communication, such as input and output queues, is used. In 
other cases, a shared memory model is used for communication, and it is necessary to 
provide instruction-set support for synchronization because shared memory does not 
provide the required semantics. The Multiprocessor Synchronization Option is designed 
for this shared memory case.

Prerequisites: None
Incompatible Options: None

4.3.12.1  Memory Access Ordering

The Xtensa ISA requires that valid programs follow a simplified version of the Release 
Consistency model of memory access ordering. Xtensa implementations may perform 
ordinary load and store operations to non-overlapping addresses in any order. Loads 
and stores to overlapping addresses on a single processor must be executed in program 
order. This flexibility is appropriate because most memory accesses require only these 

TRUNC.S
RRR Scale and convert single-precision to signed integer, round to 0

AR[r] ← truncs(FR[s] ×s pows(2.0,t))

UEQ.S
RRR Single-precision compare unordered or equal

BRr ← FR[s] UEQs FR[t];

UFLOAT.S
RRR Convert unsigned integer to single-precision and scale

FR[r] ← ufloats(AR[s]) ×s pows(2.0,-t))

ULE.S
RRR Single-precision compare unordered or less than or equal

BRr ← FR[s] ULEs FR[t];

ULT.S
RRR Single-precision compare unordered or less than

BRr ← FR[s] ULTs FR[t]; 

UN.S
RRR Single-precision compare unordered

BRr ← FR[s] UNs FR[t]; 

UTRUNC.S
RRR Scale and convert single-precision to unsigned integer, round to 0

AR[r] ← utruncs(FR[s] ×s pows(2.0,t))

WFR
RRR Move from AR to FR

FR[r] ← AR[s]

Table 4–50.  Floating-Point Coprocessor Option Operation Instructions (continued)
Instruction1 Format Definition

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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semantics and some implementations may be able to execute programs significantly 
faster by exploiting non-program order memory access. While these semantics are ap-
propriate for most loads and stores, order does matter when synchronizing between pro-
cessors. Xtensa’s Multiprocessor Synchronization Option therefore augments ordinary 
loads and stores with acquire and release operations, which are respectively loads and 
stores with more constrained memory ordering semantics relative to each other and rel-
ative to ordinary loads and stores.

The Xtensa version of Release Consistency is adapted from Memory Consistency and 
Event Ordering in Scalable Shared-Memory Multiprocessors by Gharachorloo et. al. in 
the Proceedings of the 17th Annual International Symposium on Computer Architecture, 
1990, from which the following three definitions are directly borrowed:

A load by processor i is considered performed with respect to processor k at a point 
in time when the issuing of a store to the same address by processor k cannot affect 
the value returned by the load.
A store by processor i is considered performed with respect to processor k at a point 
in time when an issued load to the same address by processor k returns the value 
defined by this store (or a subsequent store to the same location).
An access is performed when it is performed with respect to all processors.

Using these definitions, Xtensa places the following requirements on memory access:
Before an ordinary load or store access is allowed to perform with respect to any 
other processor, all previous acquire accesses must be performed, and
Before a release access is allowed to perform with respect to any other processor, 
all previous ordinary load, store, acquire, and release accesses must be performed, 
and
Before an acquire is allowed to perform with respect to any other processor, all pre-
vious acquire accesses must be performed. 

Many Xtensa implementations will adopt stricter memory orderings for simplicity. How-
ever, programs should not rely on any stricter memory ordering semantics than those 
specified here.

4.3.12.2  Multiprocessor Synchronization Option Architectural Additions

Table 4–51 shows this option’s architectural additions. 
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4.3.12.3  Inter-Processor Communication with the L32AI and S32RI Instructions

L32AI and S32RI are 32-bit load and store instructions with acquire and release se-
mantics. These instructions are useful for controlling the ordering of memory references 
in multiprocessor systems, where different memory locations may be used for synchro-
nization and data, so that precise ordering between synchronization references must be 
maintained. Other load and store instructions may be executed by processor implemen-
tations in any order that produces the same uniprocessor result.

The MEMW instruction is somewhat similar in that it enforces load and store ordering, but 
is less selective. MEMW is intended for implementing C’s volatile attribute, and not for 
high performance synchronization between processors.

L32AI is used to load a synchronization variable. This load will be performed before any 
subsequent load, store, acquire, or release is begun. This ensures that subsequent 
loads and stores do not see or modify data that is protected by the synchronization vari-
able.

S32RI is used to store to a synchronization variable. This store will not begin until all 
previous loads, stores, acquires, or releases are performed. This ensures that any loads 
of the synchronization variable that see the new value will also find all protected data 
available as well.

Consider the following example:

volatile uint incount = 0;
volatile uint outcount = 0;
const uint bsize = 8;
data_t buffer[bsize];
void producer (uint n)
{

Table 4–51.  Multiprocessor Synchronization Option Instruction Additions 
Instruction1 Format Definition

L32AI

RRI8 Load 32-bit acquire (8-bit shifted offset)
This load will perform before any subsequent loads, stores, or acquires are 
performed. It is typically used to test the synchronization variable protecting a 
critical region (for example, to acquire a lock). 

S32RI

RRI8 Store 32-bit release (8-bit shifted offset)
All prior loads, stores, acquires, and releases will be performed before this 
store is performed. It is typically used to write a synchronization variable to 
indicate that this processor is no longer in a critical region (for example, to 
release a lock).

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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for (uint i = 0; i < n; i += 1) {
data_t d = newdata(); // produce next datum
while (outcount == i - bsize); // wait for room
buffer[i % bsize] = d; // put data in buffer
incount = i+1; // signal data is ready

}
}
void consumer (uint n)
{

for (uint i = 0; i < n; i += 1) {
while (incount == i); // wait for data
data_t d = buffer[i % bsize]; // read next datum
outcount = i+1; // signal data read
usedata (d); // use datum

}
}

Here, incount and outcount are synchronization variables, and buffer is a shared 
data variable. producer’s writes to incount and consumer’s writes to outcount 
must use S32RI and producer’s reads of outcount and consumer’s reads of 
incount must use L32AI. If producer’s write to incount were done with a simple 
S32I, the processor or memory system might reorder the write to buffer after the write 
to incount, thereby allowing consumer to see the wrong data. Similarly, if 
consumer’s read of incount were done with a simple L32I, the processor or memory 
system might reorder the read to buffer before the read of incount, also causing 
consumer to see the wrong data.

4.3.13 Conditional Store Option

In addition to the memory ordering needs satisfied by the Multiprocessor Synchroniza-
tion Option, a multiprocessor system can require mutual exclusion, which cannot easily 
be programmed using the Multiprocessor Synchronization Option. The Conditional Store 
Option is intended to add that capability. It does so by adding a single instruction 
(S32C1I), which atomically stores to a memory location only if its current value is the 
expected one. A state register (SCOMPARE1) is also added to provide the additional op-
erand required. Some implementations also have a state register (ATOMCTL) for further 
control of the atomic operation in cache and on the PIF bus.

Prerequisites: Multiprocessor Synchronization Option (page 74)
Incompatible Options: None

When the atomic operation reaches the PIF bus, it causes a Read-Compare-Write 
(RCW) transaction on the PIF, which is different from normal reads and writes.

4.3.13.1  Conditional Store Option Architectural Additions

Table 4–52 through Table 4–53 show this option’s architectural additions. 
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4.3.13.2  Exclusive Access with the S32C1I Instruction

L32AI and S32RI allow inter-processor communication, as in the producer-consumer 
example in Section 4.3.12.3 (barrier synchronization is another example), but they are 
not efficient for guaranteeing exclusive access to data (for example, locks). Some sys-
tems may provide efficient, tailored, application-specific exclusion support. When this is 
not appropriate, the ISA provides another general-purpose mechanism for atomic up-
dates of memory-based synchronization variables that can be used for exclusion algo-
rithms. The S32C1I instruction stores to a location if the location contains the value in 
the SCOMPARE1 register. The comparison of the old value and the conditional store are 
atomic. S32C1I also returns the old value of the memory location, so it looks like both a 
load and a store; this allows the program to determine whether the store succeeded, 
and if not it can use the new value as the comparison for the next S32C1I. For example, 
an atomic increment could be done as follows:

l32ai a3, a2, 0 // current value of memory
loop:

wsr a3, scompare1 // put current value in SCOMPARE1
mov a4, a3 // save for comparison
addi a3, a3, 1 // increment value
s32c1i a3, a2, 0 // store new value if memory

// still contains SCOMPARE1
bne a3, a4, loop // if value changed, try again

Table 4–52.  Conditional Store Option Processor-State Additions 

Register 
Mnemonic Quantity Width

(bits) Register Name R/W
Special 
Register 
Number1

SCOMPARE1 1 32 Conditional store comparison data R/W 12
ATOMCTL2 1 6 Atomic Operation Control R/W 99
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 3–23 on page 46.
2. Register exists only in some implementations.

Table 4–53.  Conditional Store Option Instruction Additions 
Instruction1 Format Definition

S32C1I RRI8

Store 32-Bit compare conditional
Stores to a location only if the location contains the value in the SCOMPARE1 
register. The comparison of the old value and the store, if equal, is atomic. The 
instruction also returns the old value of the memory location.

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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Semaphores and other exclusion operations are equally simple to create using S32C1I.

There are many possible atomic memory primitives. S32C1I was chosen for the Xtensa 
ISA because it can easily synthesize all other primitives that operate on a single memory 
location. Many other primitives (for example, test and set, or fetch and add) are not as 
universal. Only primitives that operate on multiple memory locations are more powerful 
than S32C1I. Note that there can be subtle issues with some algorithms if between a 
read and an S32C1I, there are multiple changes to the target which bring the value 
back to the original one. 

The SCOMPARE1 register is undefined after reset.

4.3.13.3  Use Models for the S32C1I Instruction

Because of its nature as an atomic read-compare-write instruction, the S32C1I instruc-
tion is unusual in its relationships to local memories, caches, and system memories. Fol-
lowing is a list of ways that the S32C1I instruction is able to interact with memory. Some 
implementations use the ATOMCTL Special Register described below to control which 
way the instruction interacts with each memory type. Other implementations interact in a 
fixed way with each memory type. Refer to a specific Xtensa processor data book for 
more detailed information on how a specific processor handles S32C1I instructions.

Local Memory — Xtensa processors with the Conditional Store Option and the Data 
RAM Option configured will execute S32C1I instructions whose address resolves to 
a DataRAM address directly on that DataRAM. Unless access to the DataRAM is 
shared with another master, no external logic is necessary in this case. None of the 
other ways listed below may be used for addresses resolving to a DataRAM.
Exception — Xtensa processors with the Conditional Store Option and the Excep-
tion Option configured can execute the S32C1I instruction by taking an exception 
(LoadStoreErrorCause). The exception may be considered an error, or it may 
be used as a way to emulate the effect of the S32C1I instruction. Exception may be 
the only method available for certain memory types or it may be directed by the 
ATOMCTL register.
RCW Transaction — Xtensa processors with the Conditional Store Option and the 
Processor Interface Option configured can execute the S32C1I instruction by send-
ing an RCW transaction on the PIF bus. External logic must then implement the 
atomic read-compare-write on the memory location. If the Data Cache Option is con-
figured and the memory region is cacheable, any corresponding cache line will be 
flushed out of the cache by the S32C1I instruction using the equivalent of a DHWBI 
instruction before the RCW transaction is sent. RCW Transaction may be the only 
method available for certain memory types or it may be directed by the ATOMCTL 
register.
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If the address of the RCW transaction targets the Inbound PIF port of another 
Xtensa processor, the targeted Xtensa processor has the Conditional Store Option 
and the Data RAM Option configured, and the RCW address targets the DataRAM, 
the RCW will be performed atomically on the target processor’s DataRAM. No exter-
nal logic other than PIF bus interconnects is necessary to allow an Xtensa processor 
to atomically access a DataRAM location in another Xtensa processor in this way.
Internal Operation — Xtensa processors with the Conditional Store Option and the 
Data Cache Option configured can execute the S32C1I instruction by allocating and 
filling the line in the cache and accessing the location atomically there. No external 
logic is necessary in this case. Internal Operation may be the only method available 
for certain memory types or it may be directed by the ATOMCTL register.

4.3.13.4  The Atomic Operation Control Register (ATOMCTL) under the Conditional Store 
Option

The ATOMCTL register exists in some implementations of the Conditional Store Option to 
control how the S32C1I instruction interacts with the cache and with the PIF bus. Imple-
mentations without the ATOMCTL register allow only one behavior per memory type. 
Table 4–54 shows the ATOMCTL register. Table 4–54 describes the fields of the 
ATOMCTL register. See Section 4.3.13.4 above for the meaning of the codes in the table.

31 6 5 4 3 2 1 0

reserved WB WT BY

24 2 2 2
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ATOMCTL is defined after processor reset as shown in Table 5–186 on page 237.

An older, fixed operation, Xtensa processor which operates on all cacheable and bypass 
regions by RCW transaction may be emulated by setting the ATOMCTL register to 0x15. 
One which operates only on bypass regions by RCW transaction may be emulated by 
setting the ATOMCTL register to 0x01.

Bits of the ATOMCTL register are present even when they correspond to a memory type 
which is not configured in the Xtensa processor. For example, a processor configured 
without a Data Cache will still contain the fields WB and WT and those fields may contain 
any value. But in this case, no cacheable memory will be addressable and so it will not 
be possible to make use of these fields.

In an Xtensa processor with the Data RAM Option configured, the ATOMCTL register 
does not affect the "Local Memory" use model or the receiving of Inbound PIF transac-
tions as described under the "RCW Transaction" use model in Section 4.3.13.3.

4.3.13.5  Memory Ordering and the S32C1I Instruction

With regard to the memory ordering defined for L32AI and S32RI in Section 4.3.12.1, 
S32C1I plays the role of both acquire and release. That is, before the atomic pair of 
memory accesses can perform, all ordinary loads, stores, acquires, and releases must 
have performed. In addition, before any following ordinary load, store, acquire, or re-

Table 4–54.  ATOMCTL Register Fields

Field Width 
(bits) Definition

WB 2

S32C1I to Writeback Cacheable Memory (including Writeback NoAllocate Memory)
0 → Exception - LoadStoreErrorCause 
1 → RCW Transaction 
2 → Internal Operation 
3 → Reserved

WT 2

S32C1I to Writethrough Cacheable Memory (including Cached-NoAllocate Memory)
0 → Exception - LoadStoreErrorCause 
1 → RCW Transaction 
2 → Internal Operation1 

3 → Reserved

BY 2

S32C1I to Bypass Memory
0 → Exception - LoadStoreErrorCause 
1 → RCW Transaction 
2 → Reserved 
3 → Reserved

1. Some implementations do not implement this case and take an exception (LoadStoreErrorCause)instead.
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lease can be allowed to perform, the atomic pair of the S32C1I must have performed. 
This allows the conditional store to make atomic changes to variables with ordering re-
quirements, such as the counts discussed in the example in Section 4.3.12.3.

4.4 Options for Interrupts and Exceptions

The options in this section have the primary function of adding and controlling the be-
havior of the processor in the presence of exceptional conditions. These conditions in-
clude representatives of at least the following broad categories:

Instruction exceptions are unusual situations or errors encountered in the execu-
tion of the current instruction stream.
Interrupts are requests from outside the instruction stream that, if enabled, can start 
the processor executing a different instruction stream.
Machine checks are failures of the processor hardware or related hardware that 
need special handling to avoid causing the overall system to fail.
Debug conditions do not arise from the execution of the program or the surrounding 
hardware, but rather from the desire of another agent to track the execution of the 
processor.
Reset redirects the processor from any state, usually the undefined state after pow-
er-on, and starts it on a known execution path.

There are many ways of handling these conditions ranging from ignoring the conditions 
or freezing the clock and asserting an output signal to multi-threaded self-handling of ex-
ceptional conditions. The Exception Option provides for the self-handling of instruction 
exceptions and reset. Its self-handling mechanisms for these can be extended by the 
Relocatable Vector Option and the Unaligned Exception Option. In addition, it provides a 
foundation for additional options such as the Interrupt Option, the High-Priority Interrupt 
Option, or the Timer Interrupt Option. Again, the Debug Option can be added to provide 
for hardware debugging.

4.4.1 Exception Option

The Exception Option implements basic functions needed in the management of all 
types of exceptional conditions. These conditions are handled by the processor itself by 
redirecting execution to an exception vector to handle the condition with the possibility of 
returning to continue execution at the original code stream. The option only fully imple-
ments the management of a subset of exceptional conditions. Additional options provid-
ing additional exception types use the Exception Option as a foundation.

Prerequisites: None
Incompatible options: None
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Compatibility Note: Currently available hardware supports Xtensa Exception Archi-
tecture 2 (XEA2) and the descriptions in this chapter cover only XEA2. Differences 
between this and Xtensa Exception Architecture 1 (XEA1) are described, for purpos-
es of writing system software for XEA1 processors, in Section A.2 on page 611.

4.4.1.1  Exception Option Architectural Additions

Table 4–55 through Table 4–58 show this option’s architectural additions. 

Table 4–55.  Exception Option Constant Additions (Exception Causes) 
Exception Cause Constant Value
IllegalInstructionCause 6'b000000 (decimal 0)
SyscallCause 6'b000001 (decimal 1)
InstructionFetchErrorCause 6'b000010 (decimal 2)
LoadStoreErrorCause 6'b000011 (decimal 3)

Table 4–56.  Exception Option Processor-Configuration Additions 
Parameter Description Valid Values
NDEPC Existence (number) of DEPC 0..1

ResetVector
Reset exception vector
(PC of first instruction executed after reset)

32-bit address

UserExceptionVector
Vector for exceptions and level-1 interrupts 
when PS.EXCM = 0 and PS.UM = 1

32-bit address

KernelExceptionVector
Vector for exceptions and level-1 interrupts 
when PS.EXCM = 0 and PS.UM = 0

32-bit address

DoubleExceptionVector
Vector for exceptions when 
PS.EXCM = 1

32-bit address
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Table 4–57.  Exception Option Processor-State Additions 

Register 
Mnemonic Quantity Width 

(bits) Register Name R/W
Special 
Register 
Number1

EPC[1] 1 32 Exception program counter2 R/W 177
EXCCAUSE 1  6 Cause of last exception3 R/W 232
EXCSAVE[1] 1 32 Save location for last exception2 R/W 209
PS 1  -4 Miscellaneous processor state5 R/W 230

PS.EXCM
1 4 Exception mode (see Table 4–63 on 

page 87)
R/W 230

PS.UM
1 1 User vector mode (see Table 4–63 on 

page 87)
R/W 230

EXCVADDR
1 32 Virtual address that caused last fetch, load, 

or store exception
R/W 238

DEPC 1 32 Double exception PC (exists if NDEPC=1) R/W 192
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 3–23 on page 46.
2. The EPC[i] and EXCSAVE[i] registers for interrupts above level 1 are part of the High-Priority Interrupt Option (Table 4–75 on page 107).
3. See Table 4–64 on page 89 for the format of this register and Table 4–65 on page 94 for which vectors have causes reported in this register.
4. Width depends on other configuration options.
5. See "The Miscellaneous Program State Register (PS) under the Exception Option" on page 87.

Table 4–58.  Exception Option Instruction Additions 
Instruction1 Format Definition

EXCW
RRR Exception wait

Waits for any exceptions of previously executed 
instructions to occur.

SYSCALL
RRR System call

Generates an exception. 

RFE
RRR Returns from the KernelExceptionVector 

exception.
RFDE RRR Returns from double exception (uses EPC if NDEPC=0)
ILL or illegal  
instruction

— Illegal instruction executed
The opcode ILL is guaranteed to always be an illegal 
instruction

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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4.4.1.2  Exception Causes under the Exception Option

A broad set of interrupts and exceptions can be handled by the processor itself under 
the Exception Option. Table 4–59 through Table 4–62 list the types of exceptional condi-
tions other than reset that can be handled under the Exception Option either natively or 
with the help of an additional option. In each table, the first column contains the name of 
the condition. The second column contains a description of the condition and the third 
column contains both the option required for the condition to be handled and the name 
of the vector to which execution will be redirected. Reset is provided by the Exception 
Option and redirects execution to ResetVector.

Table 4–59.  Instruction Exceptions under the Exception Option 
Condition Description Required Option & Vector
Illegal instruction Attempt to execute an illegal instruction or a legal 

instruction under illegal conditions
Exception Option 
General vector1

System call Attempt to execute the SYSCALL instruction Exception Option 
General vector1

Instruction fetch error Internal physical address or a data error during 
instruction fetch

Exception Option 
General vector1

Load or store error Internal physical address or data error during 
load or store

Exception Option 
General vector1

Unaligned data exception Attempt to load or store data at an address which 
cannot be handled due to alignment

Unaligned Exception Option 
General vector1

Privileged instruction Attempt to execute a privileged operation without 
sufficient privilege

MMU Option 
General vector1

Memory access prohibited Attempt to access data or instructions at a 
prohibited address

Region Protection Option or MMU 
Option — General vector1

Memory privilege violation Attempt to access data or instructions without 
sufficient privilege

MMU Option 
General vector1

Address translation failure Memory access needs translation information it 
does not have available

MMU Option 
General vector1

PIF bus error Address or data error external to the processor 
on the PIF bus2

Processor Interface Option 
General vector1

1. General vector means.DoubleExceptionVector if PS.EXCM is set. Otherwise it means UserExceptionVector if PS.UM is 
set or KernelExceptionVector if PS.UM is clear.

2. Imprecise errors on writes are not included.
3. n can take on the values 4, 8, or 12 in each of overflow and underflow making a total of 6 vectors.
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Window exception Attempt to execute an instruction needing AR 
values moved between registers and stack

Windowed Register Option 
WindowOverflown3, or 
WindowUnderflown3

Alloca exception Attempt to move the stack pointer when it would 
cause an illegal condition on the stack

Windowed Register Option 
General vector1

Coprocessor disabled Attempt to execute an instruction requiring the 
state of a disabled coprocessor

Coprocessor Option 
General vector1

Table 4–60.  Interrupts under the Exception Option 
Condition Description Required Option & Vector
Level-1 interrupt Level or edge interrupt pin assertion handled as 

part of general vector with software check
Interrupt Option 
General vector1

Level-1 SW interrupt Version of level-1 interrupt caused by software 
using WSR.INTSET

Interrupt Option 
General vector1

Medium-Level interrupt Level/edge interrupt pin assertion handled with 
special interrupt level, masked on stack unusable

High-Priority Interrupt Option 
InterruptVector[2..6]2

Medium-Level SW 
interrupt

Version of medium level interrupt caused by 
software using WSR.INTSET

High-Priority Interrupt Option 
InterruptVector[2..6]2

High-Level interrupt Level/edge interrupt pin assertion handled with 
special interrupt level, extra stack care needed

High-Priority Interrupt Option 
InterruptVector[2..6]2

High-level SW interrupt Version of high level interrupt caused by software 
using WSR.INTSET

High-Priority Interrupt Option 
InterruptVector[2..6]2

Non-maskable interrupt Edge triggered interrupt pin that cannot be 
masked by software

High-Priority Interrupt Option 
InterruptVector[2..7]2

Peripheral interrupt Internal hardware (e.g., timers) causes one of the 
above interrupts without an external pin

Timer Interrupt Option 
(asserts another interrupt type)

1. General vector means.DoubleExceptionVector if PS.EXCM is set. Otherwise it means UserExceptionVector if PS.UM is 
set or KernelExceptionVector if PS.UM is clear.

2. Medium and high level interrupts may use levels any level 2..6 not used for debug conditions. NMI is one level higher than the highest medium, 
high, or debug level.

Table 4–61.  Machine Checks under the Exception Option 
Condition Description Required Option & Vector
ECC/parity error An access to cache or local memory 

produced an ECC or parity error
Memory ECC/Parity Option 
MemoryErrorVector

Table 4–59.  Instruction Exceptions under the Exception Option (continued)
Condition Description Required Option & Vector

1. General vector means.DoubleExceptionVector if PS.EXCM is set. Otherwise it means UserExceptionVector if PS.UM is 
set or KernelExceptionVector if PS.UM is clear.

2. Imprecise errors on writes are not included.
3. n can take on the values 4, 8, or 12 in each of overflow and underflow making a total of 6 vectors.
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4.4.1.3  The Miscellaneous Program State Register (PS) under the Exception Option

The PS register contains miscellaneous fields that are grouped together primarily so that 
they can be saved and restored easily for interrupts and context switching. Figure 4–8 
shows its layout and Table 4–63 describes its fields. Section 5.3.5 “Processor Status 
Special Register” describes the fields of this register in greater detail. The processor ini-
tializes these fields on processor reset: PS.INTLEVEL is set to 15, if it exists and 
PS.EXCM is set to 1, and the other fields are set to zero.

Figure 4–8.  PS Register Format

Table 4–62.  Debug Conditions under the Exception Option 
Condition Description Required Option & Vector
ICOUNT exception An instruction would have incremented the 

ICOUNT register to zero.
Debug Option 
InterruptVector[dbg]1

BREAK exception Attempt to execute the BREAK or BREAK.N 
instruction.

Debug Option 
InterruptVector[dbg]1

Instruction breakpoint Attempt to execute an instruction matching one of 
the instruction breakpoint registers

Debug Option 
InterruptVector[dbg]1

Data breakpoint Attempt to load or store to a data location 
matching one of the data breakpoint registers.

Debug Option 
InterruptVector[dbg]1

Debug interrupt An interrupt through OCD Debug Option2 

InterruptVector[dbg]1

1. Debug exceptions use an interrupt level provided by the High-Priority Interrupt Option. That level is labeled "dbg" in this table.
2. The debug interrupt is actually created by the OCD Option under the Debug Option.

31 19 18 17 16 15 12 11 8 7 6 5 4 3 0

*
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INTLEVEL

13 1 2 4 4 2 1 1 4

Table 4–63.  PS Register Fields 

ld Width 
(bits) Definition [Required Option]

TLEVEL
4 Interrupt-level disable [Interrupt Option]

Used to compute the current interrupt level of the processor (Section 4.4.1.4).

CM

1 Exception mode [Exception Option]
0 → normal operation 
1 → exception mode
Overrides the values of certain other PS fields (Section 4.4.1.4)
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4.4.1.4  Value of Variables under the Exception Option

The fields of the PS register listed in Table 4–63 affect many functions in the processor 
through these variables:

The current interrupt level (CINTLEVEL) defines which levels of interrupts are currently 
enabled and which are not. Interrupts at levels above CINTLEVEL are enabled. Those at 
or below CINTLEVEL are disabled. To enable a given interrupt, CINTLEVEL must be 
less than its level, and its INTENABLE bit must be 1. The level is defined by: 

CINTLEVEL ← max(PS.EXCM∗EXCMLEVEL,PS.INTLEVEL)

PS.EXCM and PS.INTLEVEL are part of the PS register in Table 4–63. EXCMLEVEL is 
defined in Table 4–74. CINTLEVEL is also used by the Debug Option.

The current ring (CRING) determines which ASIDs from the RASID register will cause a 
privilege violation. ASIDs with position (in RASID) equal to or greater than CRING may 
be used in translation while those with position less than CRING will cause a privilege vi-
olation. Privileged instructions may only be executed if CRING is zero. CRING is defined 
by: 

CRING ← if (MMU Option configured && PS.EXCM = 0) then PS.RING else 0

PS.EXCM and PS.RING are part of the PS register in Table 4–63.

1 User vector mode [Exception Option]
0 → kernel vector mode — exceptions do not need to switch stacks 
1 → user vector mode — exceptions need to switch stacks
This bit does not affect protection. It is modified by software and affects the vector 
used for a general exception.

NG 2 Privilege level [MMU Option]

B
4 Old window base [Windowed Register Option] 

The value of WindowBase before window overflow or underflow.

LLINC
2 Call increment [Windowed Register Option]

Set to window increment by CALL instructions. Used by ENTRY to rotate window.

E

1 Window overflow-detection enable [Windowed Register Option]
0 → overflow detection disabled 
1 → overflow detection enabled
Used to compute the current window overflow enable (Section 4.4.1.4)
Reserved for future use.
Writing a non-zero value to these fields results in undefined processor behavior.

Table 4–63.  PS Register Fields (continued)

ld Width 
(bits) Definition [Required Option]
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The current window overflow enable (CWOE) defines whether window overflow excep-
tions are currently enabled. It is defined by:

CWOE ← if PS.EXCM then 0 else PS.WOE

PS.EXCM and PS.WOE are part of the PS register in Table 4–63.

The current loop enable (CLOOPENABLE) determines whether the loop-back function of 
the zero-overhead loop instruction is enabled or not.

CLOOPENABLE ← PS.EXCM = 0

PS.EXCM is part of the PS register in Table 4–63.

4.4.1.5  The Exception Cause Register (EXCCAUSE) under the Exception Option

After an exception that redirects execution to one of the general exception vectors 
(UserExceptionVector, KernelExceptionVector, or DoubleExceptionVec-
tor), the EXCCAUSE register contains a value that specifies the cause of the last excep-
tion. Figure 4–9 shows the EXCCAUSE register. Table 4–64 describes the 6-bit binary-
value encodings for the register. EXCCAUSE is undefined after processor reset.

Figure 4–9.  EXCCAUSE Register

31 6 5 0

reserved EXCCAUSE

26 6

Table 4–64.  Exception Causes 
EXC-
CAUSE 
Code

Cause Name Cause Description [Required Option]
EXC-
VADDR
Loaded

0 IllegalInstructionCause Illegal instruction [Exception Option] No
1 SyscallCause SYSCALL instruction [Exception Option] No
2 InstructionFetchErrorCause Processor internal physical address or data error 

during instruction fetch [Exception Option]
Yes

3
LoadStoreErrorCause

Processor internal physical address or data error 
during load or store [Exception Option]

Yes

4
Level1InterruptCause 

Level-1 interrupt as indicated by set level-1 bits 
in the INTERRUPT register [Interrupt Option]

No

5
AllocaCause

MOVSP instruction, if caller’s registers are not in 
the register file [Windowed Register Option]

No
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6
IntegerDivideByZeroCause

QUOS, QUOU, REMS, or REMU divisor operand 
is zero [32-bit Integer Divide Option]

No

7 Reserved for Tensilica
8

PrivilegedCause
Attempt to execute a privileged operation when 
CRING ≠ 0 [MMU Option]

No

9 LoadStoreAlignmentCause Load or store to an unaligned address 
[Unaligned Exception Option]

Yes

10..11 Reserved for Tensilica
12

InstrPIFDataErrorCause
PIF data error during instruction fetch [Processor 
Interface Option]

Yes

13
LoadStorePIFDataErrorCause

Synchronous PIF data error during LoadStore 
access [Processor Interface Option]

Yes

14
InstrPIFAddrErrorCause

PIF address error during instruction fetch 
[Processor Interface Option]

Yes

15
LoadStorePIFAddrErrorCause

Synchronous PIF address error during 
LoadStore access [Processor Interface Option]

Yes

16 InstTLBMissCause Error during Instruction TLB refill [MMU Option] Yes
17

InstTLBMultiHitCause
Multiple instruction TLB entries matched [MMU 
Option]

Yes

18
InstFetchPrivilegeCause

An instruction fetch referenced a virtual address 
at a ring level less than CRING [MMU Option]

Yes

19 Reserved for Tensilica
20

InstFetchProhibitedCause
An instruction fetch referenced a page mapped 
with an attribute that does not permit instruction 
fetch [Region Protection Option or MMU Option]

Yes

21..23 Reserved for Tensilica
24

LoadStoreTLBMissCause
Error during TLB refill for a load or store [MMU 
Option]

Yes

25
LoadStoreTLBMultiHitCause

Multiple TLB entries matched for a load or store 
[MMU Option]

Yes

26
LoadStorePrivilegeCause

A load or store referenced a virtual address at a 
ring level less than CRING [MMU Option]

Yes

27 Reserved for Tensilica
28

LoadProhibitedCause
A load referenced a page mapped with an 
attribute that does not permit loads [Region 
Protection Option or MMU Option]

Yes

Table 4–64.  Exception Causes (continued)
EXC-
CAUSE 
Code

Cause Name Cause Description [Required Option]
EXC-
VADDR
Loaded
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Exceptions that redirect execution to other vectors that do not use EXCCAUSE may either 
report details in a different cause register or may have only a single cause and no need 
for additional cause information.

4.4.1.6  The Exception Virtual Address Register (EXCVADDR) under the Exception Option

The exception virtual address (EXCVADDR) register contains the virtual byte address that 
caused the most recent fetch, load, or store exception. Table 4–64 shows, for every ex-
ception cause value, whether or not the exception virtual address register will be set. 
This register is undefined after processor reset. Because EXCVADDR may be changed 
by any TLB miss, even if the miss is handled entirely by processor hardware, code that 
counts on it not changing value must guarantee that no TLB miss is possible by using 
only static translations for both instruction and data accesses. Figure 4–10 shows the 
EXCVADDR register format.

Figure 4–10.  EXCVADDR Register Format

4.4.1.7  The Exception Program Counter (EPC) under the Exception Option

The exception program counter (EPC) register contains the virtual byte address of the 
instruction that caused the most recent exception or the next instruction to be executed 
in the case of a level-1 interrupt. This instruction has not been executed. Software may 
restart execution at this address by using the RFE instruction after fixing the cause of the 
exception or handling and clearing the interrupt. This register is undefined after proces-
sor reset and its value might change whenever PS.EXCM is 0.

29
StoreProhibitedCause

A store referenced a page mapped with an 
attribute that does not permit stores [Region 
Protection Option or MMU Option]

Yes

30..31 Reserved for Tensilica
32..39 CoprocessornDisabled Coprocessor n instruction when cpn disabled. n 

varies 0..7 as the cause varies 32..39 
[Coprocessor Option]

No

40..63 Reserved

31 0

Exception Virtual Address

32

Table 4–64.  Exception Causes (continued)
EXC-
CAUSE 
Code

Cause Name Cause Description [Required Option]
EXC-
VADDR
Loaded
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The Exception Option defines only one EPC value (EPC[1]). The High-Priority Interrupt 
Option extends the EPC concept by adding one EPC value per high-priority interrupt 
level (EPC[2..NLEVEL+NNMI]).

Figure 4–11 shows the EPC register format.

Figure 4–11.  EPC Register Format for Exception Option

4.4.1.8  The Double Exception Program Counter (DEPC) under the Exception Option

The double exception program counter (DEPC) register contains the virtual byte ad-
dress of the instruction that caused the most recent double exception. A double excep-
tion is one that is raised when PS.EXCM is set. This instruction has not been executed. 
Many double exceptions cannot be restarted, but those that can may be restarted at this 
address by using an RFDE instruction after fixing the cause of the exception.

The DEPC register exists only if the configuration parameter NDEPC=1. If DEPC does not 
exist, the EPC register is used in its place when a double exception is taken and when 
the RFDE instruction is executed. The consequence is that it is not possible to recover 
from most double exceptions. NDEPC=1 is required if both the Windowed Register 
Option and the MMU Option are configured. DEPC is undefined after processor reset.

Figure 4–12 shows the DEPC register format.

Figure 4–12.  DEPC Register Format

4.4.1.9  The Exception Save Register (EXCSAVE) under the Exception Option

The exception save register (EXCSAVE[1]) is simply a read/write 32-bit register intend-
ed for saving one AR register in the exception vector software. This register is undefined 
after processor reset and there are many software reasons its value might change 
whenever PS.EXCM is 0.

The Exception Option defines only one exception save register (EXCSAVE[1]). The 
High-Priority Interrupt Option extends this concept by adding one EXCSAVE register per 
high-priority interrupt level (EXCSAVE[2..NLEVEL+NNMI]).

31 0

Exception Instruction Virtual Address

32

31 0

Exception Instruction Virtual Address

32
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Figure 4–13 shows the EXCSAVE register format.

Figure 4–13.  EXCSAVE Register Format

4.4.1.10  Handling of Exceptional Conditions under the Exception Option

Under the Exception Option, exceptional conditions are handled by saving some state 
and redirecting execution to one of a set of exception vector locations as listed in 
Table 4–59 through Table 4–62 along with ResetVector. This section looks at this pro-
cess from the other end and describes how the code at a vector can determine the na-
ture of the exceptional condition that has just occurred.

Table 4–65 shows, for each vector, how the code can determine what has happened. 
The first column lists the possible vectors, not just for the Exception Option itself, but 
also for other options that add on to the Exception Option. For vectors which can be 
reached for more than one cause, the second column indicates the register containing 
the main indicator of that cause. The third column indicates other registers that may 
contain secondary information under that vector. The last column shows the option that 
is required for the vector and the other listed registers to exist.

The three exception vectors that use EXCCAUSE for the primary cause information form 
a set called the “general vector.” If PS.EXCM is set when one of the exceptional condi-
tions is raised, then the processor is already handling an exceptional condition and the 
exception goes to the DoubleExceptionVector. Only a few double exceptions are 
recoverable, including a TLB miss during a register window overflow or underflow ex-
ception. For these, EXCCAUSE (and EXCSAVE in Table 4–66) must be well enough un-
derstood not to need duplication. Otherwise (PS.EXCM clear), if PS.UM is set the excep-
tion goes to the UserExceptionVector, and if not the exception goes to the 
KernelExceptionVector. The Exception Option effectively defines two operating 
modes: user vector mode and kernel vector mode, controlled by the PS.UM bit. The 
combination of user vector mode and kernel vector mode is provided so that the user 
vector exception handler can switch to an exception stack before processing the excep-
tion, whereas the kernel vector exception handler can continue using the kernel stack.

Single or multiple high-priority interrupts can be configured for any hardware prioritized 
levels 2..6. These will redirect to the InterruptVector[i] where “i” is the level. One 
of those levels, often the highest one, can be chosen as the debug level and will redirect 
execution to InterruptVector[d] where “d” is the debug level. The level one higher 
than the highest high-priority interrupt can be chosen as an NMI, which will redirect exe-
cution to InterruptVector[n] where “n” is the NMI level (2..7).

31 0

For Software Use

32
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In addition to these characteristics of Vectors, when the Relocatable Vector Option 
(page 98) is configured, the vectors are divided into two groups and within each group 
are required to be in increasing address order as listed below:

Static Vector Group:
ResetVector

MemoryErrorVector

Dynamic Vector Group:
WindowOverflow4

WindowUnderflow4

WindowOverflow8

WindowUnderflow8

WindowOverflow12

WindowUnderflow12

InterruptVector[2]

Table 4–65.  Exception and Interrupt Information Registers by Vector 
Vector Main Cause Other Information Required Option
ResetVector — — Exception Option
UserExceptionVector EXCCAUSE INTERRUPT, EXCVADDR Exception Option
KernelExceptionVector EXCCAUSE INTERRUPT, EXCVADDR Exception Option
DoubleExceptionVector EXCCAUSE EXCVADDR Exception Option
WindowOverflow4 — — Windowed Register Option
WindowOverflow8 — — Windowed Register Option
WindowOverflow12 — — Windowed Register Option
WindowUnderflow4 — — Windowed Register Option
WindowUnderflow8 — — Windowed Register Option
WindowUnderflow12 — — Windowed Register Option
MemoryErrorVector MESR MECR, MEVADDR High-Priority Interrupt Option
InterruptVector[i]1 INTERRUPT — High-Priority Interrupt Option
InterruptVector[d]2 DEBUGCAUSE — Debug Option
InterruptVector[n]3 — — High-Priority Interrupt Option
1. "i" indicates an arbitrary interrupt level. Medium- and high-level interrupts may be levels 2..6.
2. "d" indicates the debug level. It may be levels 2..6 but is usually the highest level other than NMI.
3. "n" indicates the NMI level. It may be levels 2..7. It must be the highest level but contiguous with other levels.
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InterruptVector[3]

InterruptVector[4]

InterruptVector[5]

InterruptVector[6]

InterruptVector[7]
KernelExceptionVector

UserExceptionVector

DoubleExceptionVector

Table 4–66 shows, for each vector in the first column, which registers are involved in the 
process of taking the exception and returning from it for that vector. Since there is no re-
turn from the ResetVector, it has no entries in the other four columns of this table. 
Otherwise all entries have a second column entry of where the PC is saved and a fifth 
column entry of the instruction which should be used for returning. The third column 
shows where the current PS register value is saved before being changed, while the 
fourth column shows where the handler may find a scratch register. Note that the gener-
al vector entries and the window vector entries modify the PS only in ways that their re-
spective return instructions undo, and therefore there is no required PS save register. 
The window vector entries do not need scratch space because they are loading and 
storing a block of AR registers that they can use for scratch where they need it.

Table 4–66.  Exception and Interrupt Exception Registers by Vector 
Vector PC PS Scratch Return Instr.
ResetVector — — — —
UserExceptionVector EPC — EXCSAVE RFE

KernelExceptionVector EPC — EXCSAVE RFE

DoubleExceptionVector DEPC — EXCSAVE RFDE

WindowOverflow4 EPC — — RFWO

WindowOverflow8 EPC — — RFWO

WindowOverflow12 EPC — — RFWO

WindowUnderflow4 EPC — — RFWU

WindowUnderflow8 EPC — — RFWU

WindowUnderflow12 EPC — — RFWU

MemoryErrorVector MEPC MEPS MESAVE RFME

1. "i" indicates an arbitrary interrupt level. Medium- and high-level interrupts may be levels 2..6.
2 "d" indicates the debug level. It may be levels 2..6 but is usually the highest level other than NMI.
3. "n" indicates the NMI level. It may be levels 2..7. It must be the highest level but contiguous with other levels.
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The taking of an exception under the Exception Option has the following semantics:

procedure Exception(cause)
if (PS.EXCM & NDEPC=1) then

DEPC ← PC
nextPC ← DoubleExceptionVector

elseif PS.EXCM then
EPC[1] ← PC
nextPC ← DoubleExceptionVector

elseif PS.UM then
EPC[1] ← PC
nextPC ← UserExceptionVector

else
EPC[1] ← PC
nextPC ← KernelExceptionVector

endif 
EXCCAUSE ← cause
PS.EXCM ← 1

endprocedure Exception

4.4.1.11  Exception Priority under the Exception Option

In implementations where instruction execution is overlapped (for example, via a pipe-
line), multiple instructions can cause exceptions. In this case, priority is given to the ex-
ception caused by the earliest instruction. 

When a given instruction causes multiple exceptions, the priority order for choosing the 
exception to be reported is listed below from highest priority to lowest. In cases where it 
is possible to have more than one occurrence of the same cause within the same in-
struction, the priority among the occurrences is undefined.

Pre-Instruction Exceptions: 
Non-maskable interrupt
High-priority interrupt (including debug exception for DEBUG INTERRUPT)
Level1InterruptCause

InterruptVector[i]1 EPCi1 EPSi1 EXCSAVEi1 RFIi1

InterruptVector[d]2 EPCd2 EPSd2 EXCSAVEd2 RFId2

InterruptVector[n]3 EPCn3 EPSn3 EXCSAVEn3 RFIn3

Table 4–66.  Exception and Interrupt Exception Registers by Vector (continued)
Vector PC PS Scratch Return Instr.

1. "i" indicates an arbitrary interrupt level. Medium- and high-level interrupts may be levels 2..6.
2 "d" indicates the debug level. It may be levels 2..6 but is usually the highest level other than NMI.
3. "n" indicates the NMI level. It may be levels 2..7. It must be the highest level but contiguous with other levels.
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Debug exception for ICOUNT
Debug exception for IBREAK

Fetch Exceptions: 
Instruction-fetch translation errors
- InstTLBMultiHitCause
- InstTLBMissCause
- InstFetchPrivilegeCause
- InstFetchProhibitedCause
InstructionFetchErrorCause (Instruction-fetch address or instruction data errors)
ECC/parity exception for Instruction-fetch

Decode Exceptions: 
IllegalInstructionCause
PrivilegedCause
SyscallCause (SYSCALL instruction)
Debug exception for BREAK (BREAK, BREAK.N instructions)

Execute Register Exceptions: 
Register window overflow
Register window underflow (RETW, RETW.N instructions)
AllocaCause (MOVSP instruction)
CoprocessornDisabledCause

Execute Data Exceptions: 

Divide by Zero

Execute Memory Exceptions: 
LoadStoreAlignmentCause (in the absence of the Hardware Alignment Option)
Debug exception for DBREAK
IHI, PITLB, IPF, or IPFL, or IHU target translation errors, in order of priority:
- InstTLBMultiHitCause
- InstTLBMissCause
- InstFetchPrivilegeCause
- InstFetchProhibitedCause
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Load, store, translation errors, in order of priority:
- LoadStoreTLBMultiHitCause
- LoadStoreTLBMissCause
- LoadStorePrivilegeCause
- LoadProhibitedCause
- StoreProhibitedCause
InstructionFetchErrorCause (IPFL target address or data errors)
LoadStoreAlignmentCause (in the presence of the Hardware Alignment Option)
LoadStoreErrorCause (Load or store external address or data errors)
ECC/parity exception for all accesses except instruction-fetch

Exceptions are grouped in the priority list by what information is necessary to determine 
whether or not the exception is to be raised. The pre-instruction exceptions may be eval-
uated before the instruction begins because they require nothing but the PC of the in-
struction. Fetch exceptions are encountered in the process of fetching the instruction. 
Decode exceptions may be evaluated after obtaining the instruction itself. Execute regis-
ter exceptions require internal register state and execute memory exceptions involve the 
process of accessing the memory on which the instruction operates.

Exceptions are not necessarily precise. On some implementations, some exceptions are 
raised after subsequent instructions have been executed. In such implementations, the 
EXCW instruction can be used to prevent unwanted effects of imprecise exceptions. The 
EXCW instruction causes the processor to wait until all previous instructions have taken 
their exceptions, if any.

Interrupts have an implicit EXCW; when an interrupt is taken, all instructions prior to the 
instruction addressed by EPC have been executed and any exceptions caused by those 
instructions have been raised. Interrupts are listed at the top of the priority list. Because 
the relative cycle position of an internal instruction and an interrupt pin assertion is not 
well-defined, the priority of interrupts with respect to exceptions is not truly well-defined 
either.

4.4.2 Relocatable Vector Option

This option splits Exception Vectors into two groups and adds a choice of two base ad-
dresses for one group and a Special Register as a base for the other group.

Prerequisites: Exception Option (page 82)
Incompatible options: None
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Under the Relocatable Vector Option, exception vectors are more restricted than they 
are without it. The vectors are organized into two groups, a "Static" group and a "Dy-
namic" group. Within each group there is a required order among the vectors which ex-
ist. The list immediately after Table 4–65 (page 94) indicates both the group and the or-
der within the group. Some implementations may place an upper bound on the size of 
each group of vectors as measured by the difference between the address of the high-
est numbered vector in the group and the address of the lowest numbered vector in the 
group.

The Static group of vectors is not movable under software control. Two base addresses 
for the Static group are set by the designer at configuration time and an input pin of the 
processor is sampled at reset to determine which of the two configured addresses will 
be used. The base address will not change after reset. The offsets from this base are 
also chosen at configuration time and will not change.

The Dynamic group of vectors is movable under software control. The Special Register, 
VECBASE, described in Table 5–155 on page 224, holds the current base for the Dynam-
ic group. The special register resets to a value set by the designer at configuration time 
but is freely writable using the WSR.VECBASE instruction. The offsets from the base 
must increase in the order indicated by Table 4–66 and are also set by the designer at 
configuration time.

4.4.2.1  Relocatable Vector Option Architectural Additions

Table 4–67 shows this option’s architectural additions. 

4.4.3 Unaligned Exception Option

This option causes an exception to be raised on any unaligned memory access whether 
it is generated by core architecture memory instructions, by optional instructions, or by a 
designer’s TIE instructions.1 With system software cooperation, occasional unaligned 
accesses can be handled correctly.

Table 4–67.  Relocatable Vector Option Processor-State Additions 

Register 
Mnemonic Quantity Width

(bits) Register Name R/W
Special 
Register 
Number1

VECBASE 1 28 Vector base R/W Table 5–155

1. In the T1050 release, which was the first for the Unaligned Exception Option, only Core Architecture memory instructions raise the unaligned 
exception.
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Cache line oriented instructions such as prefetch and cache management instructions 
will not raise the unaligned exception. Special instructions such as LICW that use a gen-
erated address for something other than an actual memory address also will not raise 
the exception. Individual instruction listings list the unaligned exception when it can be 
raised by that instruction.

Memory access instructions will raise the exception when address and size indicate it. 
Any address that is not a multiple of the size associated with the instruction will raise the 
unaligned exception whether or not the access crosses any particular size boundary. For 
example, an L16UI instruction that generates the address 32’h00000005, will raise 
the unaligned exception, even though the access is entirely within a single 32-bit ac-
cess.

The exception cause register will contain LoadStoreAlignmentCause as indicated 
below and the exception virtual address register will contain the virtual address of the 
unaligned access. 

Prerequisites: Exception Option (page 82) 
Incompatible options: None

4.4.3.1  Unaligned Exception Option Architectural Additions

Table 4–68 shows this option’s architectural additions. 

4.4.4 Interrupt Option

The Interrupt Option implements level-1 interrupts. These are asynchronous exceptions 
on processor input signals or software exceptions. They have the lowest priority of all in-
terrupts. Level-1 interrupts are handled differently than the high-priority interrupts at pri-
ority levels 2 through 6 or NMI. The Interrupt Option is a prerequisite for the High-Priority 
Interrupt Option, Timer Interrupt Option, and Debug Option. 

Certain aspects of high-priority interrupts are specified along with those of level-1 inter-
rupts in the Interrupt Option. Specifically, the following parameters are specified:

NINTERRUPT—Total number of level-1 plus high-priority interrupts. 
INTTYPE[0..NINTERRUPT-1]—Interrupt type (level, edge, software, or internal) 
for level-1 plus high-priority interrupts. 
INTENABLE—Interrupt-enable mask for level-1 plus high-priority interrupts.

Table 4–68.  Unaligned Exception Option Constant Additions (Exception Causes) 
Exception Cause Description Constant Value

LoadStoreAlignmentCause
Load or store to an unaligned address.
(seeTable 4–64 on page 89)

6'b001001 (decimal 9)
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INTERRUPT—Interrupt-request register for level-1 plus high-priority interrupts.

Nevertheless, high-priority interrupts specified in the Interrupt Option are not operational 
without implementation of the High-Priority Interrupt Option. 

Prerequisites: Exception Option (page 82)
Incompatible options: None

4.4.4.1  Interrupt Option Architectural Additions

Table 4–69 through Table 4–72 show this option’s architectural additions.

Table 4–69.  Interrupt Option Constant Additions (Exception Causes) 
Exception Cause Description Constant Value

Level1InterruptCause
Level-1 interrupt (seeTable 4–64 on 
page 89)

6'b000100 (decimal 4)

Table 4–70.  Interrupt Option Processor-Configuration Additions 

Parameter Description Valid  
Values

NINTERRUPT
Number of level-1, high-priority, and non-maskable 
interrupts

1..32

INTTYPE[0..NINTERRUPT-1]
Interrupt type for level-1, high-priority, and non-maskable 
interrupts Section 4.4.4.2

See 
Table 4–73

LEVEL[0..NINTERRUPT-1] Priority level of level-1 interrupts1 1
1. This parameter has a fixed, implicit value. The parameter associates the level-1 interrupts with their interrupt priority (level) which, by defini-

tion, is always level 1 (lowest priority), The parameter must be explicitly specified only for the high-priority interrupts (Table 4–74 on page 107), 
each of which can be assigned different priority levels, from 2 to 15.

Table 4–71.  Interrupt Option Processor-State Additions 

Register 
Mnemonic Quantity Width

(bits) Register Name R/W
Special 
Register 
Number1

PS.INTLEVEL
1 4 Interrupt-level disable

(see Table 4–63 on page 87)
R/W See Table 4–63 

on page 87
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 3–23 on page 46. 
2. Level-sensitive interrupt bits are read-only, edge-triggered interrupt bits are read/clear, and software interrupt bits are read/write. Two register 

numbers are provided for software modification to the INTERRUPT register: one that sets bits, and one that clears them.
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4.4.4.2  Specifying Interrupts

Interrupt types (INTTYPE in Table 4–70) can be any of the values listed in Table 4–73. 
The column labeled “Priority” shows the possible range of priorities for the interrupt type. 
The column labeled “Pin” indicates whether there is an Xtensa core pin associated with 
the interrupt, while the column labeled “Bit” indicates whether or not there is a bit in the 
INTERRUPT and INTENABLE Special Registers corresponding to the interrupt. The last 
two columns indicate how the interrupt may be set and how it may be cleared.

INTENABLE

1

NINTERRUPT

Interrupt enable mask 
(Level-1 and high-priority interrupts)
There is one bit for each level-1 and 
high-priority interrupt, except non-
maskable interrupt (NMI) and 
Debug interrupt. To enable a given 
interrupt, CINTLEVEL 
(Table 4–57 on page 84) must be 
less than the level assigned by 
LEVEL[i] to that interrupt, and 
the INTENABLE bit for that 
interrupt must be set to 1. 

R/W 228

INTERRUPT 
(the mnemonics 
INTERRUPT, 
INTSET, and 
INTCLEAR are 
used depending on 
the type of access)

1

NINTERRUPT

Interrupt request register
(level-1 and high-priority interrupts)
This holds pending level-1 and high-
priority interrupt requests. There is 1 
bit per pending interrupt, except 
non-maskable interrupt (NMI). If the 
bit is set to 1, an interrupt request is 
pending. External level interrupt bits 
are not writable.

R or
R/W2

226 for read, 
226 for set, and 
227 for clear

Table 4–72.  Interrupt Option Instruction Additions 
Instruction1 Format Definition

RSIL RRR Read and set interrupt level
WAITI RRR Wait for interrupt

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.

Table 4–71.  Interrupt Option Processor-State Additions (continued)

Register 
Mnemonic Quantity Width

(bits) Register Name R/W
Special 
Register 
Number1

1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 3–23 on page 46. 
2. Level-sensitive interrupt bits are read-only, edge-triggered interrupt bits are read/clear, and software interrupt bits are read/write. Two register 

numbers are provided for software modification to the INTERRUPT register: one that sets bits, and one that clears them.
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A variable number (NINTERRUPT) of interrupts can be defined during processor configu-
ration. External interrupt requests are signaled to the processor by either level-sensitive 
or edge-triggered inputs. Software can test these interrupt requests at any time by read-
ing the INTERRUPT register. An arbitrary number of software interrupts, not tied to an 
external signal, can also be configured. Level-1 interrupts use either the 
UserExceptionVector or KernelExceptionVector defined in Table 4–56 on 
page 83, depending on the current setting of the PS.UM bit.

Software can manipulate the interrupt-enable bits (INTENABLE register) and then set 
PS.INTLEVEL back to 0 to re-enable other interrupts, and thereby create arbitrary prior-
itizations. This is illustrated by the following C++ code:

class Interrupt {

public:

  uint32_t bit;

  void handler();

};

class Level1Interrupt {

  const uint NPRIORITY = 4; // number of priority groupings of level1 interrupts

  struct InterruptGroup {

    uint32_t allbits; // all INTERRUPT register bits at this priority

    uint32_t mask; // mask of interrupt bits at this priority and lower

    vector<Interrupt> intlist; // list of interrupts at this priority

  } priority[NPRIORITY];

public:

Table 4–73.  Interrupt Types 
Type Priority1 Pin? Bit? How Interrupt is Set How Interrupt is Cleared
Level 1 to N Yes Yes Signal level from device At device
Edge 1 to N Yes Yes Signal rising edge WSR.INTCLEAR ‘1’ 
NMI N+1 Yes No Signal rising edge Automatically cleared by HW
Software 1 to N No Yes WSR.INTSET ‘1’ WSR.INTCLEAR ‘1’ 
Timer 1 to N No Yes CCOUNT=CCOMPAREn WSR.CCOMPAREn 
Debug2 2 to N No2 No Debug hardware2 Automatically cleared by HW 
WriteErr 1 to N No Yes Bus error on write WSR.INTCLEAR ‘1’
1. Possible priorities where N is NLEVEL
2. SeeSection 4.7.6 “Debug Option” on page 197 for more detail
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  void handler();

};

// Called for all Level1 Interrupts 

void

Level1Interrupt::handler ()

{

  // determine software priority of this level1 interrupt

  uint32_t interrupts = rsr(INTERRUPT);

  uint p;

  for (p = NPRIORITY-1; (interrupts & priority[p].allbits) == 0; p -= 1) {

    if (p == 0)

      return;

  }

  // found interrupts at priority p

  uint32_t save_enable = rsr(INTENABLE); // save interrupt enables

  wsr (INTENABLE, save_enable &~ priority[p].mask);// disable lower-priority ints

  // no xSYNC instruction should be necessary here because INTENABLE and

  // PS.INTLEVEL are both written and both used in the same pipe stages

  uint32_t save_ps = rsil (0); // save PS, then set level to 0

  // now higher-priority level1 interrupts are enabled

  // service all the priority p interrupts

  do {

    // first service the priority p interrupts we read earlier

    for (vector<Interrupt>::iterator i = priority[p].intlist.begin();

 i = priority[p].intlist.end(); i++) {

      if (interrupts & i->bit) {

// interrupt i is asserted

i->handler(); // call i’s handler

// this should clear the interrupt condition before it returns

interrupts &= ~i->bit;// clear i’s bit from request

if ((interrupts & priority[p].allbits) == 0)// early check for done

  break;

      }

    }
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    // check if any more priority p interrupts arrived while we were servicing the previous batch

    interrupts = rsr(INTERRUPT);

  } while ((interrupts & priority[p].allbits) == 0);

  // no more priority p interrupts

wsr (PS, save_ps); // return to PS.INTLEVEL=1, disabling

// all level1 interrupts, before returning

wsr (INTENABLE, save_enable); // restore original enables to allow lower

// priority level1 interrupts

// return to general exception handler 

}

4.4.4.3  The Level-1 Interrupt Process

With respect to level-1 interrupts, the processor takes an interrupt when any level-1 in-
terrupt, i, satisfies:

INTERRUPTi and INTENABLEi and (1 > CINTLEVEL)

Level-1 interrupts use the UserExceptionVector and KernelExceptionVector, 
implemented by the Exception Option (Table 4–56 on page 83). The interrupt cause is 
reported as Level1InterruptCause (Table 4–64). The interrupt handler can deter-
mine which level-1 interrupt caused the exception by doing an RSR of the INTERRUPT 
register and ANDing with the contents of the INTENABLE register. The exact semantics 
of the check for interrupts is given in "Checking for Interrupts" on page 109.

The process of taking an interrupt does not clear the interrupt request. The process 
does set PS.EXCM to 1, which disables level-1 interrupts in the interrupt handler. Typi-
cally, PS.EXCM is reset to 0 by the handler, after it has set up the stack frame and 
masked the interrupt. This allows other level-1 interrupts to be serviced. For level-sensi-
tive interrupts, the handler must cause the source of the interrupt to deassert its interrupt 
request before re-enabling the interrupt. For edge-triggered interrupts or software inter-
rupts, the handler clears the interrupt condition by writing to the INTCLEAR register.

The WAITI instruction sets the current interrupt level in the PS.INTLEVEL register. In 
some implementations it also powers down the processor’s logic, and waits for an inter-
rupt. After executing the interrupt handler, execution continues with the instruction fol-
lowing the WAITI.

The INTENABLE register and the software and edge-triggered bits of the INTERRUPT 
register are undefined after processor reset.
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4.4.4.4  Use of Interrupt Instructions

The RSIL instruction reads the PS register and sets the interrupt level. It is typically 
used as follows:

RSIL a2, newlevel
code to be executed at newlevel
WSR a2, PS

A SYNC instruction is not required after the RSIL.

4.4.5 High-Priority Interrupt Option

The High-Priority Interrupt Option implements a configurable number of interrupt levels 
between level 2 and level 6, and an optional non-maskable interrupt (NMI) at an implicit 
infinite priority level. Like level-1 interrupts, high-priority interrupts are external, internal 
or software interrupts. Unlike level-1 interrupts, however, each high-priority interrupt lev-
el has its own interrupt vector and special registers dedicated for saving state 
(EPC[level], EPS[level] and EXCSAVE[level]). This allows much lower latency 
interrupts as well as very efficient handler mechanisms. The EPC, EPS and EXCSAVE 
registers are undefined after reset.

Certain aspects of high-priority interrupts are specified along with those of level-1 inter-
rupts in the Interrupt Option, including the total number of level-1 plus high-priority inter-
rupts (NINTERRUPT), the interrupt type for level-1 plus high-priority interrupts 
(INTTYPE), the interrupt-enable mask for level-1 plus high-priority interrupts  
(INTENABLE), and the interrupt-request register for level-1 plus high-priority interrupts 
(INTERRUPT).

Prerequisites: Interrupt Option (page 100)
Incompatible options: None

4.4.5.1  High-Priority Interrupt Option Architectural Additions

Table 4–74 through Table 4–76 show this option’s architectural additions. 
106 Xtensa Instruction Set Architecture (ISA) Reference Manual



Chapter 4. Architectural Options
Table 4–74.  High-Priority Interrupt Option Processor-Configuration Additions  
Parameter Description Valid Values
NLEVEL Number of high-priority interrupt levels 2..61

EXCMLEVEL Highest level masked by PS.EXCM 1..NLEVEL2

NNMI
Number of non-maskable interrupts 
(NMI)

0 or 1

LEVEL[0..NINTERRUPT-1] Priority levels of interrupts 1..NLEVEL3

InterruptVector[2..NLEVEL+NNMI]
High-priority interrupt vectors 32-bit address, 

aligned on a 4-
byte boundary

LEVELMASK[1..NLEVEL-1] Interrupt-level masks computed4

1. An interrupt’s “level” expresses its priority. The NLEVEL parameter defines the number of total interrupt levels (including level 1). Without the 
High-Priority Interrupt Option, NLEVEL is fixed at 1. With the High-Priority Interrupt Option, NLEVEL ≥ 2.

2. EXCMLEVEL was required to be 1 before the RA-2004.1 release. In the presence of the Debug Option, it still must be less than 
DEBUGLEVEL.

3. This parameter associates interrupt levels (priorities) with interrupt numbers. level-1 interrupts, by definition, are always priority level 1 (lowest 
priority), and are defined in Table 4–70 on page 101. Non-maskable interrupts (NMI) have many characteristics of the level NLEVEL+1. There 
is no level 0. 

4. This is computed as: LEVELMASK[j]i = (LEVEL[i] = j), where j is the level specified for interrupt i, and the width of each LEVELMASK is NIN-
TERRUPT. Thus, there are NLEVEL-1 masks (one for each high-priority interrupt level), and each mask is NINTERRUPT bits wide. A bit num-
ber set to 1 in a LEVELMASK means that the corresponding interrupt number has that priority level. The masks are used in the formal 
semantics to test whether an interrupt is taken on a given instruction ("Checking for Interrupts" on page 109).

Table 4–75.  High-Priority Interrupt Option Processor-State Additions 

Register Mnemonic Quantity Width 
(bits) Register Name R/W

Special 
Register 
Number1

EPC 
[2..NLEVEL+NNMI] NLEVEL+NNMI-1  

32
Exception program 
counter

R/W 178-183

EPS 
[2..NLEVEL+NNMI] NLEVEL+NNMI-1 same as PS 

register
Exception program 
state

R/W 194-199

EXCSAVE 
[2..NLEVEL+NNMI] NLEVEL+NNMI-1

 
32

Save Location for 
high-priority 
interrupt handler

R/W 210-215

1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 3–23 on page 46.

Table 4–76.  High-Priority Interrupt Option Instruction Additions 
Instruction1 Format Definition
RFI RRR Return from high-priority interrupt
1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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4.4.5.2  Specifying High-Priority Interrupts

The total number of level-1 plus high-priority interrupts (NINTERRUPT) and the interrupt 
type for level-1 plus high-priority interrupts (INTTYPE) are specified in Table 4–70 on 
page 101. The type of each high-priority interrupt level may be edge-triggered, level-
sensitive, timer, write-error, or software. 

The interrupt-enable mask for level-1 plus high-priority interrupts (INTENABLE) and the 
interrupt-request register for level-1 plus high-priority interrupts (INTERRUPT) are speci-
fied in Table 4–71 on page 101.

The total number of interrupt levels is NLEVEL+NNMI (see Table 4–74). Specific interrupt 
numbers are assigned interrupt levels using the LEVEL parameter in Table 4–74. A non-
maskable interrupt may be configured with the NNMI parameter in Table 4–74. The non-
maskable interrupt signal, if implemented, will be edge-triggered. Unlike other edge-trig-
gered interrupts, there is no need to reset the NMI interrupt by writing to INTCLEAR.

4.4.5.3  The High-Priority Interrupt Process

Each high-priority interrupt level has three registers used to save processor state, as 
shown in Table 4–75. The processor sets EPC[i] and EPS[i] when the interrupt is tak-
en. EXCSAVE[i] exists for software. The RFI instruction reverses the interrupt process, 
restoring processor state from EPC[i] and EPS[i]. 

The number of high-priority interrupt levels is expected to be small, due to the cost of 
providing separate exception-state registers for each level. Interrupt numbers that share 
level 1 are not limited to a single priority, because software can manipulate the interrupt-
enables bits (INTENABLE register) to create arbitrary prioritizations.

The processor takes an interrupt only when some interrupt i satisfies:

INTERRUPTi and INTENABLEi and (level[i] > CINTLEVEL)

where level[i] is the configured interrupt level of interrupt number i. Each level of 
high-priority interrupt has its own interrupt vector (InterruptVector in Table 4–74). 
Interrupt numbers that share a level (and associated vector) can read the INTERRUPT 
register (and INTENABLE) with the RSR instruction to determine which interrupt(s) raised 
the exception. The non-maskable interrupt (NMI), if implemented, is taken regardless of 
the current interrupt level (CINTLEVEL) or of INTENABLE.

The value of CINTLEVEL is set to at least EXCMLEVEL whenever PS.EXCM=1. Thus, all 
interrupts at level EXCMLEVEL and below are masked during the time PS.EXCM=1. This 
is done to allow high-level language coding with the Windowed Register Option of inter-
rupt handlers for interrupts whose level is not greater than EXCMLEVEL. High-priority in-
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terrupts with levels at or below EXCMLEVEL are often called medium-priority interrupts. 
The interrupt latency is somewhat lower for levels greater than EXCMLEVEL, but han-
dlers are more flexible for those whose level is not greater than EXCMLEVEL.

There are other conditions besides those in this section that can postpone the taking of 
an interrupt. For more descriptions on these, refer to a specific Xtensa processor data 
book.

4.4.5.4  Checking for Interrupts

The example below checks for interrupts. This is the checkInterrupts() procedure 
called in the code example shown in Section 3.5.4 “Instruction Fetch” on page 29. The 
procedure itself checks for interrupts and takes the highest priority interrupt that is pend-
ing.

The chkinterrupt() function for non-NMI levels returns one if:
the current interrupt level is not masking the interrupt (CINTLEVEL < level)
the interrupt is asserted (INTERRUPT)
the corresponding interrupt enable is set (INTENABLE), and
the interrupt is of the current level (LEVELMASK[level])

For NMI level interrupts, the no masking is done, but the edge sensor (made from 
NMIinput and lastNMIinput) is explicitly included to avoid repeating the NMI every 
cycle.

The takeinterrupt() function saves PC and PS in registers and changes them to 
take the interrupt.

procedure checkInterrupts()
if chkinterrupt(NLEVEL+NNMI) then

takeinterrupt[NLEVEL+NNMI]
elseif chkinterrupt(NLEVEL+NNMI-1) then
.
.
.
elseif chkinterrupt(2) then

takeinterrupt[2]
elseif chkinterrupt(1) then

Exception (Level1InterruptCause)
endif

endprocedure checkInterrupts

where chkinterrupt and takeinterrupt are defined as:

function chkinterrupt(level)
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if level = NLEVEL+1 and NNMI = 1 then
chkinterrupt ← NMIinput = 1 and LastNMIinput = 0
lastNMIinput ← NMIinput

elseif level ≤ NLEVEL then
chkinterrupt ← (CINTLEVEL < level) and

((LEVELMASK[level] and INTERRUPT and INTENABLE) ≠ 0)
else

chkinterrupt ← 0
endif

endfunction chkinterrupt

function takeinterrupt(level)
EPC[level] ← PC
EPS[level] ← PS
PC ← InterruptVector[level]
PS.INTLEVEL ← level
PS.EXCM ← 1

endfunction takeinterrupt

4.4.6 Timer Interrupt Option

The Timer Interrupt Option is an in-core peripheral option for Xtensa processors. The 
Timer Interrupt Option can be used to generate periodic interrupts from a 32-bit counter 
and up to three 32-bit comparators. One counter period typically represents a number of 
seconds of elapsed time, depending on the clock rate at which the processor is config-
ured. 

Prerequisites: Interrupt Option (page 100)
Incompatible options: None

4.4.6.1  Timer Interrupt Option Architectural Additions

Table 4–77 and Table 4–78 show this option’s architectural additions. 

Table 4–77.  Timer Interrupt Option Processor-Configuration Additions 
Parameter Description Valid Values
NCCOMPARE Number of 32-bit comparators 0..31,2

TIMERINT[0..NCCOMPARE-1] Interrupt number for each comparator 0..NINTERRUPT-13

1. The comparison registers can easily be multiplexed among multiple uses, so more than one comparator is usually not useful unless each com-
parator uses a different TIMERINT interrupt level. 

2. NCCOMPARE=0 with the Timer Interrupt Option specifies that CCOUNT exists, but there are no CCOMPARE registers or interrupts.
3. NINTERRUPT is defined in the Interrupt Option, Table 4–70.
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4.4.6.2  Clock Counting and Comparison

The CCOUNT register increments on every processor-clock cycle. When CCOUNT = 
CCOMPARE[i], a TIMERINT[i] interrupt request is generated. Although CCOUNT con-
tinues to increment and thus matches for only one cycle, the interrupt request is remem-
bered until the interrupt is taken. In spite of this, timer interrupts are cleared by writing 
CCOMPARE[i], not by writing INTCLEAR. Interrupt configuration determines the inter-
rupt number and level. It is automatically an Internal interrupt type (the INTTYPE[i] 
configuration parameter, Table 4–70).

For most applications, only one CCOMPARE register is required, because it can easily be 
shared for multiple uses. Applications that require a greater range of counting than that 
provided by the 32-bit CCOMPARE register can maintain a 64-bit cycle count and com-
pare the upper bits in software.

CCOUNT and CCOMPARE[0..NCCOMPARE-1] are undefined after processor reset.

4.5 Options for Local Memory

The options in this section have the primary function of adding different kinds of memo-
ry, such as RAMs, ROMs, or caches to the processor. The added memories are tightly 
integrated into the processor pipeline for highest performance.

4.5.1 General Cache Option Features

This subsection describes general characteristics of caches that are referred to in multi-
ple later subsections about specific cache options.

Table 4–78.  Timer Interrupt Option Processor-State Additions 

Register 
Mnemonic Quantity Width 

(bits) Register Name R/W
Special 
Register 
Number1

CCOUNT 1 32 Processor-clock count R/W2 234

CCOMPARE NCCOMPARE
32 Processor-clock compare

(CCOUNT value at which an interrupt is 
generated)

R/W3 240-242

1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 3–23 on page 46.
2. This register is not normally written except after reset; it is writable primarily for testing purposes. 
3. Writing CCOMPARE clears a pending interrupt. 
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4.5.1.1  Cache Terminology

In the cache documentation a “line” is the smallest unit of data that can be moved be-
tween the cache and other parts of the system. If the cache is “direct-mapped,” each 
byte of memory may be placed in only one position in the cache. In a direct-mapped 
cache, the “index” refers to the portion of the address that is necessary to identify the 
cache line containing the access.

A cache is “set-associative” if there is more than one location in the cache into which 
any given line may be placed. It is “N-way set-associative” if there are N locations into 
which any given line may be placed. The set of all locations into which one line may be 
placed is called a “set” and the “index” refers to the portion of the address that is neces-
sary to identify the set containing the access. The various locations within the set that 
are capable of containing a line are called the “ways” of the set. And the union of the Nth 
way of each set of the cache is the Nth “way” of the cache.

For example, a 4-way set-associative, 16k-byte cache with a 32-byte line size contains 
512 lines. There are 128 sets of 4 lines each. The index is a 7-bit value that would most 
likely consist of Address<11:5> and is used to determine what set contains the line. The 
cache consists of 4 ways, each of which is 4k-bytes in size. A set represents 128 bytes 
of storage made up of four lines of 32 bytes each.

4.5.1.2  Cache Tag Format

Figure 4–14 shows the instruction- and data-cache tag format for Xtensa. The number of 
bits in the tag is a configuration parameter. So that all lines may be differentiated, the tag 
field must always be at least 32−log2(CacheBytes/CacheWayCount) bits wide. If 
an MMU with pages smaller than a way of the cache is used, the tag field must also be 
at least 32−log2(MinPageSize) bits wide. The actual tag field size is the maximum of 
these two values. The bits used in the tag field are the upper bits of the virtual address 
left justified in the register (the most significant bit of the register represents the most 
significant bit of the virtual address, bit 31). For example:

A 16 kB direct-mapped cache would have an 18-bit tag field.
A 16 kB 2-way associative cache would have a 19-bit tag field.
A 16 kB 2-way associative cache in conjunction with an MMU with a 4kB minimum 
page size would have a 20-bit tag field.

The V bit is the line valid bit; 0 → invalid, 1 → valid. The three flag bits exist only for cer-
tain cache configurations. Any of the flag bits in Figure 4–14 not used in a particular con-
figuration are reserved for future use and writing nonzero values to them gives unde-
fined behavior. If the cache is set-associative, then bit[1] is the F bit and is used for 
cache miss refill way selection. If the cache is a data cache with writeback functionality, 
then the lowest remaining bit is the D bit, or dirty bit, and is used to signify whether the 
cache contains a value more recent than its backing store and must be written back. If 
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the Index Lock Option is selected for that cache, the lowest remaining bit is the L bit, or 
lock bit, and is used to signify whether or not the line is locked and may not be re-
placed.1

Figure 4–14.  Instruction and Data Cache Tag Format for Xtensa

4.5.1.3  Cache Prefetch 

There are two types of cache prefetch instructions. Normal prefetch instructions make 
no change in the architecturally visible state but simply attempt to move cache lines 
closer to the processor core. Any exception that might be raised causes the instruction 
to become a NOP rather than actually raising an exception. This allows prefetch instruc-
tions to be used without penalty in places where their addresses may not represent legal 
memory locations.

IPF attempts to move cache lines to the instruction cache. DPFR, DPFRO, DPFW, and 
DPFWO attempt to move cache lines to the data cache. The differences are that the *R* 
versions indicate that a write is not expected to the location in the immediate future while 
the *W* versions indicate that a write to the location is likely in the near future. The *O 
versions indicate that the most likely behavior is that the location is accessed in the near 
future, but that it is not worth keeping after that access as another access is not expect-
ed. DPFWO indicates that either a write or a read followed by a write is expected soon. 
The *O versions may be placed in different cache ways or kept in a separate buffer in 
some implementations.

The second type of prefetch instructions, prefetch and lock instructions, are only avail-
able under their respective Cache Index Lock Options. They also do not change the op-
eration of memory loads and stores and they affect only cache tag state, which affects 
only future invalidation or line replacement operations on these lines. They are heavy-
weight operations and, unlike normal prefetch instructions, are only expected to be exe-
cuted by code that sets up the caches for best performance. 

The functions iprefetch and dprefetch are described below. Because they modify 
no architectural state, they are described only by comments.

1. Note that the three flag bits are added sequentially from the right. The bits that exist are always contiguous with each other and with the V bit on 
the right. For the instruction cache, the valid combinations are 0-L-F, 0-0-F, and 0-0-0 because the instruction cache cannot be writeback and the 
Index Lock Option is only available for set-associative caches. For the data cache, the valid combinations are 0-L-F, 0-0-F, 0-0-0, L-D-F, 0-D-F, and 
0-0-D, which are the same three with and without the dirty bit inserted in its order.

31 4 3 2 1 0

Tag reserved Flag V

n 28-n 3 1
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function iprefetch(vAddr, pAddr, lock)-- instruction prefetch

if lock then

-- move the line specified by vAddr/pAddr into the instruction cache

-- mark the line locked

else

-- no architecturally visible operation performed

-- no exception raised

-- try to move the line specified by vAddr/pAddr into the instruction cache

endif

endfunction iprefetch

function dprefetch(vAddr, pAddr, excl, once, lock)-- data prefetch

if lock then

-- move the line specified by vAddr/pAddr into the data cache

-- mark the line locked

else if excl then

-- no architecturally visible operation performed

-- no exception raised

-- if caches are coherent, get an exclusive copy

if once then

-- try to move the line specified by vAddr/pAddr where it can be

-- read and written once

else

-- try to move the line specified by vAddr/pAddr into the data cache

endif

else

-- no architecturally visible operation performed

-- no exception raised

if once then

-- try to move the line specified by vAddr/pAddr where it can be 
read once

else

-- try to move the line specified by vAddr/pAddr into the data cache

endif

endif

endfunction dprefetch
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4.5.2 Instruction Cache Option

The Instruction Cache Option adds on-chip first-level instruction cache. The Instruction 
Cache Option also adds a few new instructions for prefetching and invalidation. 

Prerequisites: Processor Interface Option (page 194)
Incompatible options: None

4.5.2.1  Instruction Cache Option Architectural Additions

Table 4–79 through Table 4–80 show this option’s architectural additions. 

Table 4–79.  Instruction Cache Option Processor-Configuration Additions 
Parameter Description Valid Values

InstCacheWayCount
Instruction-cache set associativity 
(ways)

1..41

InstCacheLineBytes Instruction-cache line size (bytes) 16, 32, 64, 128, 2561

InstCacheBytes Instruction-cache size (bytes) 1kB, 1.5kB, 2kB, 3kB, ... 32kB1

MemErrDetection Error detection type2 None, parity, ECC
MemErrEnable Error enable No-detect, detect3

1. Valid values vary per implementation. Refer to information on local memories in a specific Xtensa processor data book.
2. Must be identical for every instruction memory
3. Detection may be enabled only when the Memory ECC/Parity Option is configured.
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See Section 5.7 “Caches and Local Memories” on page 240 for more information about 
synchronizations required when using the instruction cache.

4.5.3 Instruction Cache Test Option

The Instruction Cache Test Option is currently added to every processor that has an In-
struction Cache Option; therefore, it is not actually a separate option. It adds instructions 
capable of reading and writing the tag and data of the instruction cache. These instruc-
tions are intended to be used in testing the instruction cache, rather than in operational 
code and may not be implemented in a binary compatible way in all future processors.

Prerequisites: Processor Interface Option (page 194) and Instruction Cache Option 
(page 115)
Incompatible options: None

4.5.3.1  Instruction Cache Test Option Architectural Additions

Table 4–81 shows this option’s architectural additions. 

Table 4–80.  Instruction Cache Option Instruction Additions 
Instruction1 Format Definition

IPF

RRI8 Instruction-cache prefetch
This instruction checks whether the line containing the specified address is 
present in the instruction cache, and if not, begins the transfer of the line from 
memory to the cache. In some implementations, prefetching an instruction line 
may prevent the processor from taking an instruction cache miss later.

IHI

RRI8 Instruction-cache hit invalidate
This instruction invalidates a line in the instruction cache if present and not 
locked. If the specified address is not in the instruction cache then this 
instruction has no effect. If the specified line is present and not locked, it is 
invalidated. This instruction is required before executing instructions that have 
been written by this processor, another processor, or DMA.

III

RRI8 Instruction-cache index invalidate
This instruction uses the virtual address to choose a location in the instruction 
cache and invalidates the specified line if it is not locked. The method for 
mapping the virtual address to an instruction cache location is implementation-
specific. This instruction is primarily useful for instruction cache initialization 
after power-up (note that if the Instruction Cache Index Lock Option is 
implemented, an IIU instruction should precede the III).

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243
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The instruction-cache access instructions must be fetched from a region of memory that 
has the bypass attribute. Use an ISYNC instruction before transferring back to cached 
instruction space. See Section 5.7 “Caches and Local Memories” for more information 
about synchronizations required when using the instruction cache.

4.5.4 Instruction Cache Index Lock Option

The Instruction Cache Index Lock Option adds the capability of individually locking each 
line of the instruction cache. This option may only be added to a cache, which has two or 
more ways. One bit is added to the instruction cache tag RAM format. The Instruction 
Cache Index Lock Option also adds new instructions for locking and unlocking lines. 

Prerequisites: Processor Interface Option (page 194) and Instruction Cache Option 
(page 115)
Incompatible options: None

4.5.4.1  Instruction Cache Index Lock Option Architectural Additions

Table 4–82 shows this option’s architectural additions. 

Table 4–81.  Instruction Cache Test Option Instruction Additions 
Instruction1 Format Definition

LICT
RRR Load instruction cache tag

This instruction uses its address to specify a line in the Instruction Cache and 
loads the tag for that line into a register.

LICW
RRR Load instruction cache word

This instruction uses its address to specify a word in the instruction cache and 
loads that word into a register.

SICT
RRR Store instruction cache tag

This instruction uses its address to specify a line in the instruction cache and 
stores the tag for that line from a register.

SICW
RRR Store instruction cache word

This instruction uses its address to specify a word in the instruction cache and 
stores that word from a register.

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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See Section 5.7 “Caches and Local Memories” for more information about synchroniza-
tions required when using the instruction cache.

4.5.5 Data Cache Option

The Data Cache Option adds on-chip first-level data cache. It supports prefetching, writ-
ing back, and invalidation. 

The data-cache prefetch read/write/once instructions have been provided to improve 
performance, not to affect the processor state. Therefore, some implementations may 
choose to implement these instructions as no-op instructions. In general, the perfor-
mance improvement from using these instructions is implementation-dependent. In 
some implementations, these instructions check whether the line containing the speci-
fied address is present in the data cache, and if not, begin the transfer of the line from 
memory. 

Prerequisites: Processor Interface Option (page 194)
Incompatible options: None

Table 4–82.  Instruction Cache Index Lock Option Instruction Additions 
Instruction1 Format Definition

IPFL

RRI4 Instruction-cache prefetch and lock
This instruction checks whether the line containing the specified address is present in 
the instruction cache, and if not, begins the transfer of the line from memory to the 
cache. The line is placed in the instruction cache and the line marked as locked, that is, 
not replaceable by ordinary instruction cache misses. To unlock the line, use IHU or 
IIU. This instruction raises an illegal instruction exception on implementations that do 
not support instruction cache locking.

IHU

RRI4 Instruction-cache hit unlock
This instruction unlocks a line in the instruction cache if present. If the specified 
address is not in the instruction cache then this instruction has no effect. If the 
specified line is present, it is unlocked. This instruction (or IIU) is required before 
invalidating a line if it is locked.

IIU

RRI4 Instruction-cache index unlock
This instruction uses the virtual address to choose a location in the instruction cache 
and unlocks the specified line. The method for mapping the virtual address to an 
instruction cache location is implementation-specific. This instruction is primarily useful 
for unlocking the entire instruction cache. This instruction (or IHU) is required before 
invalidating a line if it is locked.

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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4.5.5.1  Data Cache Option Architectural Additions

Table 4–83 and Table 4–84 show this option’s architectural additions. 

Table 4–83.  Data Cache Option Processor-Configuration Additions 
Parameter Description Valid Values
DataCacheWayCount Data-cache set associativity (ways) 1..41

DataCacheLineBytes Data-cache line size (bytes) 16, 32, 64, 128, 2561

DataCacheBytes Data-cache size (bytes) 1kB, 1.5kB, 2kB, 3kB, ... 32kB1

IsWriteback Data-cache configured as writeback Yes, No
MemErrDetection Error detection type2 None, parity, ECC
MemErrEnable Error enable No-detect, detect3

1. Valid values vary per implementation. Refer to information on local memories in a specific Xtensa processor data book.
2. Must be identical for every data memory
3. Detection may be enabled only when the Memory ECC/Parity Option is configured.

Table 4–84.  Data Cache Option Instruction Additions 
Instruction1 Format Definition

DPFR,
DPFW,
DPFRO,
DPFWO

RRI8 Data-cache prefetch {read,write}{,once}
The four variants specify various “hints” about how the data is likely to be used in the 
future. DPFW and DPFWO indicate that the data is likely to be written in the near 
future. On some systems this is used to fetch the data with write permission (e.g. in a 
system with shared and exclusive states). DPFR and DPFRO indicate that the data is 
likely only to be read. The once forms, DPFRO and DPFWO, indicate that the data is 
likely to be read or written only once before it is replaced in the cache. On some 
implementations this might be used to select a specific cache way, or to select a 
streaming buffer instead of the cache.

DHWB

RRI8 Data-cache hit writeback
If IsWriteback, this instruction forces dirty data in the data cache to be written 
back to memory. If the specified address is not in the data cache, or is present but 
unmodified, then this instruction has no effect. If the specified address is present and 
modified in the data cache, the line containing it is written back, and marked 
unmodified. This instruction is useful before a DMA read from memory, or to force 
writes to a frame buffer to become visible, or to force writes to memory shared by two 
processors.
If not IsWriteback, DHWB is a no-op.

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243
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See Section 5.7 “Caches and Local Memories” for more information about synchroniza-
tions required when using the data cache.

DHWBI

RRI8 Data-cache hit writeback invalidate
If IsWriteback, this instruction forces dirty data in the data cache to be written 
back to memory. If the specified address is not in the data cache then this instruction 
has no effect. If the specified address is present and modified in the data cache, the 
line containing it is written back. After the writeback, if any, the line containing the 
specified address is invalidated if present and not locked. This instruction is useful in 
the same circumstances as DHWB and also before a DMA write to memory that does 
not completely overwrite the line.
If not IsWriteback, DHWBI is identical to DHI except for privilege.

DIWB

RRI4 Data-cache Index writeback (added in T1050)
If IsWriteback, this instruction forces dirty data in the data cache to be written 
back to memory. The virtual address is used, in an implementation dependent manner, 
to choose a cache line to write back. If the chosen line is unmodified, then this 
instruction has no effect. If the chosen line is modified in the data cache, the line 
containing it is written back, and marked unmodified. This instruction is useful for 
writing back the entire cache.
If not IsWriteback, DIWB is a no-op.

DIWBI

RRI4 Data-cache index writeback invalidate (added in T1050)
If IsWriteback, this instruction forces dirty data in the data cache to be written 
back to memory. The virtual address is used, in an implementation dependent manner, 
to choose a cache line to write back. If the chosen line is modified in the data cache, 
the line containing it is written back, and marked unmodified. After the writeback, if 
any, the chosen line is invalidated if it is not locked. This instruction is useful for writing 
back and invalidating the entire cache.
If not IsWriteback, DIWBI simply invalidates without writeback.

DHI

RRI8 Data-cache hit invalidate
This instruction invalidates a line in the data cache if present and not locked. If the 
specified address is not in the data cache then this instruction has no effect. If the 
specified address is present and not locked, it is invalidated. This instruction is useful 
before a DMA write to memory that overwrites the entire line.

DII

RRI4 Data-cache index invalidate
This instruction uses the virtual address to choose a location in the data cache and 
invalidates the specified line if it is not locked. The method for mapping the virtual 
address to a data cache location is implementation-specific. This instruction is 
primarily useful for data cache initialization after power-up.

Table 4–84.  Data Cache Option Instruction Additions (continued)
Instruction1 Format Definition

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243
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If IsWriteback, there is a dirty bit added to the data cache tag RAM format. The at-
tributes described in Section 4.6.3.3 and Section 4.6.5.10 are then capable of setting a 
region of memory to be either write-back or write-through. If not IsWriteback, both at-
tribute settings result in write-through semantics.

When a region of memory is marked write-back, any store that hits in the cache writes 
only the cache (setting the dirty bit, if it is not already set) and does not send a write on 
the PIF. Any store that does not hit in the cache causes a miss. When the line is filled, 
the semantics of a cache hit described above are followed. If a dirty line is evicted to use 
the space in the cache, the entire line will be written on the PIF. The DHWB, DHWBI, DI-
WB, and DIWBI instructions will also write back a line if it is marked dirty.

4.5.6 Data Cache Test Option

The Data Cache Test Option is currently added to every processor, which has a Data 
Cache Option and therefore, is not actually a separate option. It adds instructions capa-
ble of reading and writing the tag of the data cache. These instructions are intended to 
be used in testing the data cache, rather than in operational code and may not be imple-
mented in a binary compatible way in all future processors.

Prerequisites: Processor Interface Option (page 194) and Data Cache Option (page 
118)
Incompatible options: None

4.5.6.1  Data Cache Test Option Architectural Additions

Table 4–85 shows this option’s architectural additions. 

There are no instructions to access the data-cache data array. Normal loads and stores 
can be used for this purpose with the isolate attribute.

See Section 5.7 “Caches and Local Memories” for more information about synchroniza-
tions required when using the data cache.

Table 4–85.  Data Cache Test Option Instruction Additions 
Instruction1 Format Definition

LDCT
RRR Load data cache tag

This instruction uses its address to specify a line in the instruction cache and 
loads the tag for that line into a register.

SDCT
RRR Store data cache tag

This instruction uses its address to specify a line in the instruction cache and 
stores the tag for that line from a register.

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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4.5.7 Data Cache Index Lock Option

The Data Cache Index Lock Option adds the capability of individually locking each line 
of the data cache. One bit is added to the data cache tag RAM format. The Data Cache 
Index Lock Option also adds new instructions for locking and unlocking lines. 

Prerequisites: Processor Interface Option (page 194) and Data Cache Option (page 
118)
Incompatible options: None

4.5.7.1  Data Cache Index Lock Option Architectural Additions

Table 4–86 shows this option’s architectural additions. 

See Section 5.7 “Caches and Local Memories” for more information about synchroniza-
tions required when using the data cache.

Table 4–86.  Data Cache Index Lock Option Instruction Additions 
Instruction1 Format Definition

DPFL

RRI4 Data-cache prefetch and lock
This instruction checks whether the line containing the specified address is 
present in the data cache, and if not, begins the transfer of the line from 
memory to the cache. The line is placed in the data cache and the line marked 
as locked, that is, not replaceable by ordinary data cache misses. To unlock 
the line, use DHU or DIU. This instruction raises an illegal instruction 
exception on implementations that do not support data cache locking.

DHU

RRI4 Data-cache hit unlock
This instruction unlocks a line in the data cache if present. If the specified 
address is not in the data cache then this instruction has no effect. If the 
specified address is present, it is unlocked. This instruction (or DIU) is 
required before invalidating a line if it is locked.

DIU

RRI4 Data-cache index unlock
This instruction uses the virtual address to choose a location in the data cache 
and unlocks the specified line. The method for mapping the virtual address to a 
data cache location is implementation-specific. This instruction is primarily 
useful for unlocking the entire data cache. This instruction (or DHU) is required 
before invalidating a line if it is locked.

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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4.5.8 General RAM/ROM Option Features

The RAM and ROM options both provide internal memories that are part of the proces-
sor’s address space and are accessed with the same timing as cache. These memories 
should not be confused with system RAM and ROM located outside of the processor, 
which are often larger, and may be used for both instructions and data, and shared be-
tween processors and other processing elements.

The basic configuration parameters are the size and base address of the memory. It is 
possible to configure cache, RAM, and ROM independently for both instruction and da-
ta, however some implementations may require an increased clock period if multiple in-
struction or multiple data memories are specified, or if the memory sizes are large. It is 
sometimes appropriate for the system designer to instead place RAMs and ROMs exter-
nal to the processor and access these through the cache.

Every Instruction and Data RAM and ROM is always required to be naturally aligned 
(aligned on a boundary of a power of two which is equal to or larger than the size of the 
RAM/ROM) in physical address space. The mapping from virtual address space to phys-
ical address space must have the property that the Index bits of the RAM/ROM are iden-
tity mapped. This is a slightly less restrictive condition than requiring that the RAM/ROM 
must be contiguous and naturally aligned in virtual address space but this latter condi-
tion will always meet the requirement.

Instruction RAM can be referenced as data only by the L32I, L32R and S32I instruc-
tions and Instruction ROM referenced as data only by the L32I and L32R instructions. 
This functionality is provided for initialization and test purposes, for which performance 
is not critical, so these operations may be significantly slower on some Xtensa imple-
mentations. Most Xtensa code makes extensive use of L32R instructions, which load 
values from a location relative to the current PC. For this to perform well for code located 
in an instruction RAM or ROM, some sort of data memory (either internal or external) 
should be located within the 256 KB range of the L32R instruction or else the Extended 
L32R Option should be used.

Table 4–87 summarizes the restrictions on instruction and data RAM and ROM access. 
The exceptions listed assume no memory protection exception has already been raised 
on the access. 
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4.5.9 Instruction RAM Option

This option provides an internal, read-write instruction memory. It is typically useful as 
the only processor instruction store (no instruction cache) when all of the code for an ap-
plication will fit in a small memory, or as an additional instruction store in parallel with the 
cache for code that must have constant access time for performance reasons.

Prerequisites: None
Incompatible options: None

4.5.9.1  Instruction RAM Option Architectural Additions

Table 4–88 shows this option’s configuration parameters. There are no processor state 
or instruction additions.

Table 4–87.  RAM/ROM Access Restrictions 

Memory Instruction 
Fetch

L32R L32I 
L32I.N Other Loads S32I S32I.N Other Stores

InstROM ok ok1 undefined LSE3 LSE3

InstRAM ok ok1 undefined ok1 undefined
DataROM IFE2 ok ok LSE3 LSE3

DataRAM IFE2 ok ok ok ok
UnifiedRAM ok ok ok ok ok
1. Reduced performance on some Xtensa implementations
2. Instruction fetch error exception
3. Load store error exception

Table 4–88.  Instruction RAM Option Processor-Configuration Additions 
Parameter Description Valid Values
InstRAMBytes Instruction RAM size (bytes) 512, 1kB, 2kB, 4kB, ... 256kB1

InstRAMPAddr
Instruction RAM base physical 
address

32-bit address, aligned on multiple of 
its size

MemErrDetection Error detection type2 None, parity, ECC
MemErrEnable Error enable No-detect, detect3

1. Refer to information on local memories in a specific Xtensa processor data book.
2. Must be identical for every instruction memory
3. Detection may be enabled only when the Memory ECC/Parity Option is configured.
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Instruction RAM may be accessed as data using the L32I, L32R, and S32I instruc-
tions. The operation of other loads and stores on InstRAM addresses is not defined. 
S32I is useful for copying code into the InstRAM; L32I is useful for diagnostic testing of 
InstRAM, and L32R allows constants to be loaded from InstRAM if no data memory is 
within range. While L32I, L32R, and S32I to InstRAM are defined, on many implemen-
tations these accesses are much slower than references to data RAM, ROM, or cache, 
and thus the use of InstRAM for data storage is not recommended.

4.5.10 Instruction ROM Option

This option provides an internal, read-only instruction memory. It is typically useful as 
the only processor instruction store (no instruction cache) when all of the code for an ap-
plication will fit in a small memory, or as an additional instruction store in parallel with the 
cache for code that must have constant access time for performance reasons. Because 
ROM is read-only, only code that is not subject to change should be put here.

Prerequisites: None
Incompatible options: None

4.5.10.1  Instruction ROM Option Architectural Additions

Table 4–89 shows this option’s configuration parameters. There are no processor state 
or instruction additions.

Instruction ROM may be accessed as data using the L32I and L32R instructions. The 
operation of other loads on InstROM addresses is not defined. L32I is useful for diag-
nostic testing of InstROM, and L32R allows constants to be loaded from InstROM if no 
data memory is within range. While L32I and L32R to InstROM are defined, on many 
implementations these accesses are much slower than references to data RAM, ROM, 
or cache, and thus the use of InstROM for data storage is not recommended.

Table 4–89.  Instruction ROM Option Processor-Configuration Additions 
Parameter Description Valid Values
InstROMBytes Instruction ROM size (bytes) 512, 1kB, 2kB, 4kB, ... 256kB1

InstROMPAddr
Instruction ROM base physical 
address

32-bit address, aligned on multiple of 
its size

1. Refer to information on Local Memories in a specific Xtensa processor data book.
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4.5.11 Data RAM Option

This option provides an internal, read-write data memory. It is typically useful as the only 
processor data store (no data cache) when all of the data for an application will fit in a 
small memory, or as an additional data store in parallel with the cache for data that must 
be constant access time for performance reasons.

Prerequisites: None
Incompatible options: None

4.5.11.1  Data RAM Option Architectural Additions

Table 4–90 shows this option’s configuration parameters. There are no processor state 
or instruction additions.

In the absence of the Extended L32R Option it is recommended that processors with 
data RAM or ROM and no data cache be configured with the DataRAMPAddr or 
DataROMPAddr below the lowest instruction address and above the highest instruction 
address minus 256 KB, so that the L32R literals can be stored in RAM or ROM for fast 
access. The processor will fetch L32R literals from the instruction RAM, or ROM, but in 
many implementations several cycles are required for the fetch, making the use of this 
feature undesirable. The Extended L32R Option allows less restricted placement.

4.5.12 Data ROM Option

This option provides an internal, read-only data memory. It is typically useful as an addi-
tional data store in parallel with the cache for data that must be constant access time for 
performance reasons.

Prerequisites: None
Incompatible options: None

Table 4–90.  Data RAM Option Processor-Configuration Additions 
Parameter Description Valid Values
DataRAMBytes Data RAM size (bytes) 512, 1kB, 2kB, 4kB, ... 256kB1

DataRAMPAddr
Data RAM base physical address 32-bit address, aligned on multiple of 

its size
MemErrDetection Error detection type2 None, parity, ECC
MemErrEnable Error enable No-detect, detect3

1. Refer to information on Local Memories in a specific Xtensa processor data book.
2. Must be identical for every data memory
3. Detection may be enabled only when the Memory ECC/Parity Option is configured.
126 Xtensa Instruction Set Architecture (ISA) Reference Manual



Chapter 4. Architectural Options
4.5.12.1  Data ROM Option Architectural Additions

Table 4–91 shows this option’s configuration parameters. There are no processor state 
or instruction additions. 

4.5.13 XLMI Option

The XLMI Option, or Xtensa Local Memory Interface Option, allows the attachment of 
hardware other than caches, RAMs, and ROMs into the pipeline of the processor rather 
than on the processor interface bus. The advantage of the XLMI is that the latency is 
lower. The disadvantage is that speculation must be explicitly allowed for on loads. The 
XLMI port contains signals that inform external devices after the fact concerning whether 
a load was or was not speculative. Stores are never speculative. Refer to a specific 
Xtensa processor data book for more detail.

Prerequisites: None
Incompatible options: None

Instructions may not be fetched from an XLMI interface. The virtual and physical ad-
dresses of the entire XLMI region must be identical in all bits.

4.5.13.1  XLMI Option Architectural Additions

Table 4–92 shows this option’s configuration parameters. There are no processor state 
or instruction additions. 

Table 4–91.  Data ROM Option Processor-Configuration Additions 
Parameter Description Valid Values
DataROMBytes Data ROM size (bytes) 512, 1kB, 2kB, 4kB, ... 256kB1

DataROMPAddr
Data ROM base physical address 32-bit address, aligned on multiple of 

its size
1. Refer to information on local memories in a specific Xtensa processor data book.

Table 4–92.  XLMI Option Processor-Configuration Additions 
Parameter Description Valid Values
XLMIBytes XLMI size (bytes) 512, 1kB, 2kB, 4kB, ... 256kB1

XLMIPAddr
XLMI base physical address 32-bit address, aligned on multiple of 

its size
1. Refer to information on local memories in a specific Xtensa processor data book.
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4.5.14 Hardware Alignment Option

The Hardware Alignment Option adds hardware to the processor which allows loads and 
stores to work correctly at any arbitrary alignment. It does this by making multiple ac-
cesses where necessary and combining the results. Unaligned accesses are still slower 
than aligned accesses, but this option is more efficient than the Unaligned Exception 
Option with software handler. In addition, the Hardware Alignment Option will work in sit-
uations where a software handler is difficult to write (for example, a load and operate in-
struction).

Prerequisites: Unaligned Exception Option (page 99) 
Incompatible options: None

The Hardware Alignment Option builds on the Unaligned Exception Option so that al-
most all potential LoadStoreAlignmentCause exceptions are handled transparently 
by hardware instead. A few situations, which are never expected to happen in real soft-
ware, still raise a LoadStoreAlignmentCause exception. In order to properly handle 
all TLB misses and other exceptions, the priority of the LoadStoreAlignmentCause 
exception is lower when the Hardware Alignment Option is present than when it is not. 
Exception priorities are listed in Section 4.4.1.11.

A LoadStoreAlignmentCause exception may still be raised in some implementations 
with the Hardware Alignment Option if the address of a load or store instruction is not a 
multiple of its size and any of the following conditions is also true:

The instruction is one of L32AI, S32RI, or S32C1I.
The memory type for either portion is XLMI, IRAM, or IROM.
The memory types (cache, DataRAM, bypass) of the two portions differ.
The cache attribute for either portion is Isolate.
The column labeled "Meaning for Cache Access" in either Table 4–104 on page 155 
or Table 4–109 on page 178 is different for the two portions of the access.

4.5.15 Memory ECC/Parity Option

The Memory ECC/Parity Option allows the local memories and caches of Xtensa pro-
cessors to be protected against errors by either parity or error correcting code (ECC). It 
does not affect the processor interface and system memories must maintain their own 
error detection and correction. Local memories must be wide enough to contain the ad-
ditional bits required. The generation and checking of parity or ECC is done in the 
Xtensa core through a combination of hardware and software mechanisms.

Prerequisites: Exception Option (page 82)
Incompatible options: None
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Each memory may be protected or not protected individually. All protected instruction 
memories must use a single protection type (parity or ECC). Likewise, all protected data 
memories must use a single protection type. For parity protection, data memories re-
quire one additional bit per byte while instruction memories require one additional bit per 
four bytes and cache tags require one additional bit per tag. For ECC protection, instruc-
tion memories require 7 additional bits per 32-bit word, data memories require 5 addi-
tional bits per byte, and cache tags require 7 additional bits per tag.

The core computes parity or ECC bits on every store without doing a read-modify-write. 
On every load or instruction fetch, these bits are checked and an exception is raised for 
parity errors or for uncorrectable ECC errors. For correctable errors, a control bit in the 
memory error status register (Table 4–94) indicates whether to raise an exception or 
simply correct the value to be used (but not the value in memory) and continue. In addi-
tion, correctable ECC errors assert an output pin which may be used as an interrupt. Im-
plementations may or may not implement hardware correction. If they do not implement 
it, the exception is always raised.

4.5.15.1  Memory ECC/Parity Option Architectural Additions

Table 4–93 through Table 4–95 show this option’s architectural additions.

Table 4–93.  Memory ECC/Parity Option Processor-Configuration Additions 
Parameter Description Valid Values
MemoryErrorVector Exception vector for memory errors 32-bit address

Each RAM/Cache has configuration 
additions valid when the Memory 
ECC/Parity Option is configured

Table 4–94.  Memory ECC/Parity Option Processor-State Additions 
Register 
Mnemonic Quantity Width 

(bits) Register Name R/W Access

MEPC 1 32 Memory error PC register R/W 106

MEPS
1 same as 

PS 
register1

Memory error PS register R/W 107

MESAVE 1 32 Memory error save register R/W 108
MESR 1 19 Memory error status register R/W 109
MECR 1 22 Memory error check register R/W 110

MEVADDR
1 32 Memory error virtual address 

register
R/W 111

1. There are enough bits to save all configured PS Register Fields. See Table 4–63 on page 87.
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4.5.15.2  Memory Error Information Registers

Three registers are used to maintain information about a memory error. They are updat-
ed for memory errors which do not raise an exception, as well as those which do. The 
memory error status register (MESR), shown in Figure 4–15 with further description in 
Table 4–98, contains control bits that control the operation of memory errors and status 
bits that hold information about memory errors that have occurred.

Under normal operation, check bits are always calculated and written to local memories. 
When ECC is enabled, an uncorrectable error, or a correctable error for which the 
MESR.DataExc or MESR.InstExc bit is set, will raise an exception whenever it is en-
countered during either a load or a dirty castout. Inbound PIF operations return an error 
when appropriate but the error will not be noted by the local processor. Correctable er-
rors during a dirty castout when MESR.DataExc is clear may, in some implementations, 
correct the error on the fly without setting MESR.RCE or associated status.

When ECC is enabled and either the MESR.DataExc bit or the MESR.InstExc bit is 
clear or the MESR.MemE bit is set, hardware may be able to correct an error without rais-
ing an exception. This may cause MESR.RCE (along with many other fields), 
MESR.DLCE, or MESR.ILCE to be set by hardware at an arbitrary time.

In addition, an external pin reflects the state of MESR.RCE and can be connected to an 
interrupt input on the Xtensa processor itself or on another processor. This interrupt may 
be at a much lower priority than the memory error exception handler, but it can still re-
pair the memory itself and/or log the error much as the memory error exception handler 
might. MESR.RCE must be cleared by software to return the external pin to zero and to 
re-arm the mechanism for recording correctable errors.

Figure 4–15.  MESR Register Format

Table 4–95.  Memory ECC/Parity Option Instruction Additions
Instruction1 Format Definition
RFME RRR Return from memory error
1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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Table 4–96.  MESR Register Fields 

Field Width 
(bits) Definition

MemE

1 Memory error.
0 → Memory error exception not in progress.
1 → Memory error exception in progress.
Set on taking memory error exception. Cleared by RFME instruction. Software reads 
and writes MemE normally.

DME

1 Double Memory error.
0 → Normal memory error exception.
1 → Current memory error exception encountered during a Memory error exception.
Set on taking memory error exception while MemE is set. Hardware does not clear. 
Software reads and writes DME normally.

RCE (ECC1)

1 Recorded correctable error. (Exists only if ECC is configured.)
0 → Status refers to something else.
1 → Status refers to an error corrected by hardware.
RCE means that status refers to a correctable memory error that has been fixed in 
hardware. Status, here, means the group of state that contains information about a 
memory error. It consists of the status fields of MESR (Way Number, Access 
Type, Memory Type, and Error Type) and the contents of the MECR and 
MEVADDR registers. The recorded information may be used to fix the error in the 
memory copy or to log the error.
RCE is set by hardware whenever MemE is clear, RCE is clear, and a correctable 
error is fixed in hardware. RCE is cleared by hardware when a memory exception is 
raised as the recorded information is lost and either DLCE or ILCE is set in its place. 
Software reads and writes RCE normally.

DLCE (ECC1)

1 Data lost correctable error. (Exists only if ECC is configured.)
0 → No information has been lost about data hardware corrected memory errors.
1 → Information has been lost about data hardware corrected memory errors.
DLCE means that there has been a correctable error on a data (execute) access 
which has not been recorded because 1) it happened during a memory error exception 
(MemE set), 2) a memory error exception happened before it was recorded (RCE now 
cleared), or 3) it happened after another correctable error and before that error was 
recorded (RCE also set).
DLCE is set by hardware whenever any data (execute) correctable error is fixed in 
hardware but MemE or RCE is set and the new Access Type is not instruction 
fetch. DLCE is also set by hardware when any memory exception is raised with RCE 
set and with the current Access Type is not instruction fetch. DLCE is never 
cleared by hardware. Software reads and writes DLCE normally.

1. In some implementations the bits used with ECC may exist as state bits without effect even when only parity is configured.
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ILCE (ECC1)

1 Instruction fetch (Ifetch) lost correctable error. (Exists only if ECC is configured.)
0 → No information has been lost about ifetch hardware corrected memory errors.
1 → Information has been lost about ifetch hardware corrected memory errors.
ILCE means that there has been a correctable error on an Ifetch access which has 
not been recorded because 1) it happened during a memory error exception (MemE 
set), 2) a memory error exception happened before it was recorded (RCE now 
cleared), or 3) it happened after another correctable error and before that error was 
recorded (RCE also set).
ILCE is set by hardware whenever any Ifetch correctable error is fixed in hardware 
but MemE or RCE is set and the new Access Type is instruction fetch. ILCE is 
also set by hardware when any memory exception is raised with RCE set and with the 
current Access Type is instruction fetch. ILCE is never cleared by hardware. 
Software reads and writes ILCE normally.

ErrEnab

1 Enable Memory ECC/Parity Option errors.
0 → Memory errors are disabled.
1 → Memory errors are enabled.
When ErrEnab is set, memory error exceptions and corrections are enabled. When 
ErrEnab is clear, the same values are written to memories, but no checks and no 
exceptions are raised on memory reads. Operation is undefined when both 
ErrEnab and ErrTest are set. ErrEnab is not modified by hardware.

ErrTest

1 Memory error test mode.
0 → Normal memory error operation.
1 → Special memory error test operation.
When ErrTest is set, the memory write instructions S32I, S32I.N, SICT, 
SICW, and SDCT insert the actual contents of the MECR register into the memory 
check bits and the memory read instructions L32I, L32I.N, LICT, LICW, and 
LDCT always place the actual check bits read from memory into the MECR register. 
The operation of other memory access instructions is undefined when ErrTest is 
set. When ErrTest is clear, memory writes compute appropriate check bits for 
each write and memory reads do not affect the MECR register (unless a memory error 
is detected). Cache fills and Inbound PIF operations are unaffected by the setting of 
the ErrTest bit. Operation is undefined when both ErrEnab and ErrTest are 
set. ErrTest is not modified by hardware.

Table 4–96.  MESR Register Fields (continued)

Field Width 
(bits) Definition

1. In some implementations the bits used with ECC may exist as state bits without effect even when only parity is configured.
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DataExc 
(ECC1)

1 Data exception. (Exists only if ECC is configured.)
0 → No exception on hardware correctable data memory errors.
1 → Memory error exception on hardware correctable data memory errors.
Set by software to cause memory errors which might be handled in hardware on data 
accesses to raise the memory error exception instead. This bit is forced to 1 (cannot 
be cleared) if hardware is unable to handle any data access errors. If MemE is set, no 
exception is raised for errors which hardware can handle even if DataExc is set. 
DataExc is not modified by hardware.

InstExc 
(ECC1)

1 Instruction exception. (Exists only if ECC is configured.)
0 → No exception on hardware correctable instruction fetch memory errors.
1 → Memory error exception on hardware correctable instr. fetch memory errors.
Set by software to cause memory errors which might be handled in hardware on 
instruction fetches to raise the memory error exception instead. This bit is forced to 1 
(cannot be cleared) if hardware is unable to handle any instruction fetch errors. If 
MemE is set, no exception is raised for errors which hardware can handle even if 
InstExc is set. InstExc is not modified by hardware.

Way Number

2 Cache way number of a memory error. (Exists only if a multiway cache is configured.)
When RCE or MemE is set and the Memory Type field points to a cache, this field 
contains the cache way number containing the error.
Way Number is set by hardware whenever MemE is clear, RCE is clear, and a 
correctable error is fixed in hardware or whenever a memory exception is raised.

Access Type

2 Access type of an access with memory error.
0 → Memory error during load or store
1 → Memory error during instruction fetch
2 → Memory error during instruction memory access (such as IPFL or IHI)
3 → Memory error during dirty line castout
When RCE or MemE is set, this field contains an indication of the access type which 
caused the memory error. 
Access Type is set by hardware whenever MemE is clear, RCE is clear, and a 
correctable error is fixed in hardware or whenever a memory exception is raised.

Table 4–96.  MESR Register Fields (continued)

Field Width 
(bits) Definition

1. In some implementations the bits used with ECC may exist as state bits without effect even when only parity is configured.
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The memory error check register (MECR), shown in Figure 4–16 with further description 
in Table 4–97, contains syndrome bits that indicate what error occurred. For data memo-
ries, all four check fields are used so that all bytes may be covered. For instruction 
memories or for cache tags, only the Check 0 field is used.

When the ErrEnab bit of the MESR register is set and the RCE or MemE bit of the MESR 
register is turned on, this register contains error syndromes. For parity memories, the er-
ror syndrome is ’1’ corresponding to a parity error and ’0’ corresponding to no parity er-
ror. For ECC memories, the error syndrome is a set of bits equal in length to the number 
of check bits associated with that portion of memory. The bits are all zero where there is 

Memory Type

4 Memory type to which the access with memory error was directed.
0 → Error in instruction RAM 0.
1 → Error in data RAM 0.
2 → Error in instruction cache data array.
3 → Error in data cache data array
4 → Error in instruction RAM 1.
5 → Error in data RAM 1.
6 → Error in Instruction cache tag array.
7 → Error in data cache tag array
8-15 → Reserved
When RCE or MemE is set, this field contains a pointer to the memory which caused 
the memory error. 
Memory Type is set by hardware whenever MemE is clear, RCE is clear, and a 
correctable error is fixed in hardware or whenever a memory exception is raised.

Error Type

2 Type of memory error.
0 → Reserved
1 → Parity error
2 → Correctable ECC error
3 → Uncorrectable ECC error
When RCE or MemE is set, this field contains an indicator of the type of memory error 
which caused the memory error.
Error Type is set by hardware whenever MemE is clear, RCE is clear, and a 
correctable error is fixed in hardware or whenever a memory exception is raised.

*
Reserved for future use
Writing a non-zero value to one of these fields results in undefined processor behavior. 
These bits read as undefined.

Table 4–96.  MESR Register Fields (continued)

Field Width 
(bits) Definition

1. In some implementations the bits used with ECC may exist as state bits without effect even when only parity is configured.
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no error. Non-zero values give more information about which bit or bits are in error. The 
exact encoding depends on the implementation. See the Xtensa Microprocessor Data 
Book for more information on the encoding.

When the ErrTest bit of the MESR register is set, MECR is loaded by every L32I, 
L32I.N, LICT, LICW, and LDCT instruction with the actual check bits which have been 
read from memory. When the ErrTest bit of the MESR register is set, the fields of MECR 
are used by the S32I, S32I.N, SICT, SICW, and SDCT instructions to write the memory 
check bits. Operation of other memory access instructions is not defined when ErrTest 
is set. Operation is not defined if both ErrEnab and ErrTest are set.

Error addresses are reported with reference to the 32-bit word containing the error re-
gardless of the size of the access and for all errors MEVADDR contains an address 
aligned to 32-bits. For data memories, the check field(s) in MECR corresponding to the 
damaged byte(s) contains a non-zero syndrome. For tag memories and instruction 
memories, the Check 0 field of MECR contains the syndrome for the entire word. Errors 
in portions of the word not actually used by the access may or may not be reported in 
MECR.

Figure 4–16.  MECR Register Format

31 29 28 24 23 21 20 16 15 13 12 8 7 6 0

* Check 3 * Check 2 * Check 1 * Check 0

3 5 3 5 3 5 1 7

Table 4–97.  MECR Register Fields 

Field Width 
(bits) Definition

Check 3

5 Check bits for the high order byte of a 32 bit data word.
This field is valid for accesses to data RAM and data cache. It contains 5 check bits for 
ECC memories and 1 check bit (at the right end of the field) for parity memories. The 
field is associated with the highest address byte in little endian processors and the 
lowest address byte in big endian processors.

Check 2

5 Check bits for the next high order byte of a 32 bit data word.
This field is valid for accesses to data RAM and data cache. It contains 5 check bits for 
ECC memories and 1 check bit (at the right end of the field) for parity memories. The 
field is associated with the second highest address byte in little endian processors and 
the second lowest address byte in big endian processors.
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The memory error virtual address register (MEVADDR), shown in Figure 4–17, contains 
address information regarding the location of the error. Table 4–98 details its contents as 
a function of two fields of the MESR register. For errors in cache tags and for errors in 
castout data, MEVADDR contains only index information. Along with the Way Number 
field in MESR, this allows the incorrect memory bits to be located. For errors in instruc-
tions or data being accessed, MEVADDR contains the full virtual address used by the in-
struction. Along with other status information, MEVADDR is written when the ErrEnab bit 
of the MESR register is set and the RCE or MemE bit of the MESR register is turned on.

Figure 4–17.  MEVADDR Register Format

Check 1

5 Check bits for the next low order byte of a 32 bit data word.
This field is valid for accesses to data RAM and data cache. It contains 5 check bits for 
ECC memories and 1 check bit (at the right end of the field) for parity memories. The 
field is associated with the second lowest address byte in little endian processors and 
the second highest address byte in big endian processors.

Check 0

7 Check bits for the low order byte of a 32 bit data word.
For accesses to data RAM and data cache this field contains 5 check bits for ECC 
memories and 1 check bit (at the right end of the field) for parity memories and is 
associated with the lowest address byte in little endian processors and the highest 
address byte in big endian processors.
For accesses to instruction RAM, instruction cache and all cache tags, this field 
contains 7 check bits for ECC memories and 1 check bit (at the right end of the field) 
for parity memories and covers the whole 32-bit word or tag.

*
Reserved for future use
Writing a non-zero value to one of these fields results in undefined processor behavior. 
These bits read as undefined.

31 0

Memory Error Virtual Address

32

Table 4–98.  MEVADDR Contents 
MESR Memory Type MESR Access Type MEVADDR Contents
Instruction RAM n Full virtual address used in instruction.
Data RAM n Full virtual address used in instruction.
1. For LICW instructions or Isolate cache attributes, only the index and way bits along with lower order bits are valid.

Table 4–97.  MECR Register Fields (continued)

Field Width 
(bits) Definition
136 Xtensa Instruction Set Architecture (ISA) Reference Manual



Chapter 4. Architectural Options
4.5.15.3  The Exception Registers

Three of the new registers created by this option are used in order to be able to take a 
memory error exception at any time and return. As an exception, memory error cannot 
be masked except by the MESR.ErrEnab bit. Whenever the exception is taken, the PC 
of the instruction taking the error is saved in the MEPC register, the PS register is saved 
in the MEPS register, and the MESAVE register is available for software use in the excep-
tion handler.

When an actual memory error exception is taken, the MEPC and MEPS registers are load-
ed with the original values of PC and PS, and then PS.INTLEVEL is raised to NLEVEL so 
that all interrupts except NMI are masked and the PS.EXCM bit is set so that an ordinary 
exception will cause a double exception. When hardware corrects a correctable memory 
error, these actions are not taken, allowing memory error corrections even in the memo-
ry error exception handler.

A memory error exception may be taken at any time. This means that, even without 
hardware correction, a memory error can be handled any time except during a memory 
error handler. With hardware correction, only an uncorrectable memory error taken dur-
ing a handler for another uncorrectable memory error is fatal.

4.5.15.4  Memory Error Semantics

Memory errors have the following semantics:

procedure MemoryError
return if !MESR.ErrEnab
exc ← ParityError | UncorrectableECCError
exc ← 1 if !MESR.MemE & MESR.InsExc & AccessType = IFetch
exc ← 1 if !MESR.MemE & MESR.DatExc & AccessType ≠ IFetch
MESR.ILCE ← 1 if exc & MESR.RCE & MESR.AccessType = IFetch
MESR.DLCE ← 1 if exc & MESR.RCE & MESR.AccessType ≠ IFetch
MESR.ILCE ← 1 if !exc & MESR.RCE & AccessType = IFetch
MESR.DLCE ← 1 if !exc & MESR.RCE & AccessType ≠ IFetch

Instruction cache tag array Index bits are valid, other bits are undefined.
Instruction cache data array Full virtual address used in instruction.1

Data cache tag array Index bits are valid, other bits are undefined.
Data cache data array LoadStore Full virtual address used in instruction.1

Data cache data array Castout Index bits are valid, other bits are undefined.

Table 4–98.  MEVADDR Contents (continued)
MESR Memory Type MESR Access Type MEVADDR Contents

1. For LICW instructions or Isolate cache attributes, only the index and way bits along with lower order bits are valid.
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MESR.ILCE ← 1 if !exc & MESR.MemE & AccessType = IFetch
MESR.DLCE ← 1 if !exc & MESR.MemE & AccessType ≠ IFetch
if exc | !MESR.RCE then

MESR.WayNumber ← WayNumber
MESR.AccessType ← AccessType
MESR.MemoryType ← MemoryType
MESR.ErrorType ← ErrorType
MECR ← CheckBits
if MESR.AccessType = Castout then

MEVADDR ← Undefined||CacheIndex||Undefined
elsif MESR.MemoryType = Tag then

MEVADDR ← Undefined||CacheIndex||Undefined
else

MEVADDR ← VAddr
endif
MESR.RCE ← !exc

endif
if exc then

MESR.DME ← MESR.MemE
MESR.MemE ← 1
MEPC ← PC
MEPS ← PS
nextPC ← MemoryErrorExceptionVector
PS.INTLEVEL ← NLEVEL
PS.EXCM ← 1

endif
endprocedure MemoryError

4.6 Options for Memory Protection and Translation

Xtensa processors employ one of the options in this section for memory protection and 
translation. The introduction in Section 4.6.1 provides background information for the 
options in this section. The Region Protection Option described in Section 4.6.3 pro-
vides control of memory by 512 MB regions. Within each region, accessibility, cacheabil-
ity, and characteristics of cacheability can be controlled. The Region Translation Option 
described in Section 4.6.4 builds on that and adds a translation table with an entry for 
each region so that virtual addresses in that region can be translated to corresponding 
physical addresses in any of the 512 MB regions. The MMU Option described in 
Section 4.6.5 is a full paging memory management unit. It supports hardware refill of the 
TLB from page tables in memory.
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4.6.1 Overview of Memory Management Concepts

Section 4.6.1.1 gives an overview of the basic memory translation scheme used in 
Xtensa processors. Section 4.6.1.2 gives an overview of the basic memory protection 
scheme used in Xtensa processors, and Section 4.6.1.3 gives an overview of the con-
cept of attributes. These subsections take a broader view of the overall process and in-
dicate the direction future memory protection and translation options may take.

4.6.1.1  Overview of Memory Translation

This subsection presents an overview of the thinking behind the memory translation in 
the available options. It also provides insight into the kinds of extensions that are likely 
in the future.

The available memory protection and translations options that support virtual-to-physical 
address translation do so via an instruction TLB and a data TLB. (“TLB” was originally 
an acronym for translation lookaside buffer, but this meaning is no longer entirely accu-
rate; in this document TLB simply means the translation hardware.) These two hardware 
structures may, in some configurations, act as translation caches that are refilled by 
hardware from a common page table structure in memory. In other configurations, a TLB 
may be self-sufficient for its translations, and no page tables are required. 

A TLB consists of several entries, each of which maps one page (the page size may 
vary with each entry). Virtual-to-physical address translation consists of searching the 
TLB for an entry that matches the most significant bits of the virtual address and replac-
ing those bits with bits from the TLB entry. The least significant bits of the virtual address 
are identical between the virtual and physical addresses. The translation input and out-
put are called the virtual page number (VPN) and the physical page number (PPN) re-
spectively. The TLB search also involves matching the address space identifier (ASID) 
bits of the TLB entry to one of the current ASIDs stored in the RASID register (more on 
this below). The number of bits not translated is determined by the page size, which can 
be dynamically programmed from a set of configuration specified values. The TLB entry 
also supplies some attribute bits for the page, including bits that determine the cache-
ability of the page’s data, whether it is writable or not, and so forth. This is illustrated in 
Figure 4–18.

It is illegal for more than one TLB entry to match both the virtual address and the ASID. 
This is true even if the entries have different ASIDs which match at different ring levels. 
Software is responsible for making sure the address range of all TLB entries visible ac-
cording to the ASID values in the RASID register never overlap. Implementations may 
detect this situation and take a MultiHit exception in this situation to aid in debugging.
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The instruction and data TLBs can be configured independently for most parameters, 
which is appropriate because the instruction and data references of processors can 
have fairly different requirements, and in some systems additional flexibility may be ap-
propriate on one but not the other. However, when the two TLBs both refill from the com-
mon memory page table, the associated parameters are shared.

Figure 4–18.  Virtual-to-Physical Address Translation

Xtensa implementations may perform virtual-to-physical address translation in parallel 
or series with cache, RAM, ROM, and XLMI access. However, the translated physical 
address is always used to decide which cache, RAM, or ROM access to use. Thus cach-
es are potentially virtually indexed, even though they are always physically tagged. 
When the number of cache index bits (that is log2(CacheBytes/WayCount)) is 
greater than a page index and the same physical memory is mapped at multiple virtual 
addresses, there is the possibility of multiple cache locations being used for the same 
physical memory line, which can lead to the multiple views of memory being inconsis-
tent. In such a system, software typically avoids this situation by restricting the virtual 
addresses for multiply mapped physical memory. This software restriction is often re-
ferred to as “page coloring.” If physically indexed caches are necessary (and generally 
they are not), the system designer may configure the TLBs such that cache index is a 
physical address by using a large page size or a high cache associativity so that the 
cache index bits are within the portion of the virtual and physical addresses that are 
identical.

ASID3
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VPN Page Index
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Attributes
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PPN Page Index

Physical Address
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The TLBs are N-way set-associative structures with heterogeneous “ways” and a config-
urable N. Each way has its own parameters, such as the number of entries, page 
size(s), constant or variable virtual address, and constant or variable physical address 
and attributes. It is the ability to specify constant translations in some or all of the ways 
that allows Xtensa’s TLBs to span smoothly from a fixed memory map to a fully pro-
grammable one. Fully or partially constant entries can be converted to logic gates in the 
TLB at significantly lower cost than a run-time programmable way. In addition, even pro-
cessors with generally programmable MMUs often have a few hardwired translations. 
Xtensa can easily represent these hardwired translations with its constant TLB entries. 
Xtensa actually requires a few constant TLB entries to provide translation in some cir-
cumstances, such as at reset and during exception handling.

The virtual address input to the TLBs is actually the catenation of an address space 
identifier (ASID) specified in a processor register with the 32-bit virtual address from the 
fetch, load, or store address calculation. ASIDs allow software to change the address 
space seen by the processor (for example, on a context switch) with a simple register 
write without changing the TLB contents. The TLB stores an ASID with each entry, and 
so can simultaneously hold translations for multiple address spaces. The number of 
ASID bits is configurable. ASIDs are also an integral part of protection, as they specify 
the accessibility of memory by the processor at different privilege levels, as described in 
the next section.

Xtensa TLBs do not have a separate valid bit in each entry. Instead, a reserved ASID 
value of 0 is used to indicate an invalid entry. This can be viewed as saving a bit, or as 
almost doubling the number of ASIDs for the same number of hardware bits stored in a 
TLB entry.

Non-constant ways may be configured as AutoRefill. If no entry matching an access is 
found in a TLB with one or more AutoRefill ways, the processor will attempt to load a 
page table entry (PTE) from memory and write it into an entry of one of the AutoRefill 
ways. A TLB with no AutoRefill ways does not use the page table.

Each way of a TLB is configured with a list of page sizes (expressed as the number of 
bits in a page index). If the list has one element, the page size for that way is fixed. If the 
list has more than one element, the page size of the way may be varied at runtime via 
the ITLBCFG or DTLBCFG registers. When AutoRefill ways have programmable page 
size, the PTE has a page size field (the value is an index into the PTEPageSizes con-
figuration parameter), and hardware refill restricts the refill way selection to ways pro-
grammed with a page size matching the page size in the PTE. When looking up an ad-
dress in the TLB, each way’s page size determines which bits are used to select one of 
the way’s entries for comparison: vAddrP+log2(IndexCount)-1..P is the way index where P is 
the number of bits configured or programmed for the way page size. 
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4.6.1.2  Overview of Memory Protection

Many processors implement two levels of privilege, often called kernel and user, so that 
the most privileged code need not depend on the correctness of less privileged code. 
The operating system kernel has access to the entire processor, but disables access to 
certain features while application code runs to prevent the application from accessing or 
corrupting the kernel or other applications. This mechanism facilitates debugging and 
improves system reliability.

Some processors implement multiple levels of decreasing privilege, called rings, often 
with elaborate mechanisms for switching between rings. The Xtensa processor provides 
a configurable number of rings (RingCount), but without the elaborate ring-to-ring tran-
sition mechanisms. When configured with two rings, it provides the common kernel/user 
modes of operation, with Ring 0 being kernel and Ring 1 being user. With three or four 
rings configured, the Xtensa processor provides the same functionality as more ad-
vanced processors, but with the requirement that ring-to-ring transitions must be provid-
ed by Ring 0 (kernel) software.

Without the MMU Option, or with the MMU Option and RingCount = 1, the Xtensa pro-
cessor has a single level of privilege, and all instructions are always available.

With RingCount > 1, software executing with CRING = 0 (see Table 4–63 on page 87 
and the description of PS.EXCM) is able to execute all Xtensa instructions; other rings 
may only execute non-privileged instructions. The only distinction between the rings 
greater than zero is those created by software in the virtual-to-physical translations in 
the page table. The name “ring” is derived from an accessibility diagram for a single pro-
cess such as that shown in Figure 4–19. At Ring 0 (that is, when CRING = 0), the pro-
cessor can access all of the current process’ pages (that is, Ring 0 to RingCount-1 
pages). At Ring 1 it can access all Ring 1 to RingCount-1 pages. Thus, when the pro-
cessor is executing with Ring 1 privileges, its address space is a subset of that at Ring 0 
privilege, as Figure 4–19 illustrates. This concentric nesting of privilege levels continues 
to ring  
RingCount-1, which can access only ring RingCount-1 pages.

It is illegal for more than one TLB entry to match both the virtual address and the ASID. 
This is true even if the entries have different ASIDs which match at different ring levels. 
One ring’s mapping cannot not override another.

It is illegal for two or more TLB entries to match a virtual address, even if they are at dif-
ferent ring levels; one ring’s mapping cannot not override another.

Systems that require only traditional kernel/user privilege levels can, of course, config-
ure RingCount to be 2. However, rings can also be useful for sharing. Many operating 
systems implement the notion of multiple threads sharing an address space, except for 
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a small number of per-thread pages. Such a system could use Ring 0 for the shared ker-
nel address space, Ring 1 for per-process kernel address space, Ring 2 for shared ap-
plication address space, and Ring 3 for per-thread application address space.

Figure 4–19.  A Single Process’ Rings 

Each Xtensa ring has its own ASID. Ring 0’s ASID is hardwired to 1. The ASIDs for 
Rings 1 to RingCount-1 are specified in the RASID register. The ASIDs for each ring 
in RASID must be different. Each ASID has a single ring level, though there may be 
many ASIDs at the same ring level (except Ring 0). This allows nested privileges with 
sharing such as shown in Figure 4–20. The ring number of a page is not stored in the 
TLB; only the ASID is stored. When a TLB is searched for a virtual address match, the 
ASIDs of all rings specified in RASID are tried. The position of the matching ASID in 
RASID gives the ring number of the page. If the page’s ring number is less than the pro-
cessor’s current ring number (CRING), then the access is denied with an exception (ei-
ther InstFetchPrivilegeCause or LoadStorePrivilegeCause, as appropriate).

Figure 4–20.  Nested Rings of Multiple Processes with Some Sharing
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Why not store the ring number of the page in the TLB, and then use a single ASID for all 
rings, instead of having an ASID per ring? Because the latter allows sharing of TLB en-
tries, and the former does not. For example, it is desirable at the very least to reuse the 
same TLB entries for all kernel mapped addresses, instead of having the same PTEs 
loaded into the TLB with different ASIDs. The Xtensa mechanism is more general than 
adding a “global” bit to each entry (to ignore the ASID match) in that it allows finer gran-
ularity, as Figure 4–20 illustrates, not just all or nothing.

The kernel typically assigns ASIDs dynamically as it runs code in different address spac-
es. When no more ASIDs are available for a new address space, the kernel flushes the 
Instruction and Data TLBs, and begins assigning ASIDs anew. For example, with 
ASIDBits = 8 and RingCount = 2, a TLB flush need occur at most every 254 context 
switches, if every context switch is to a new address space.

Note that CRING = 0 is the only requirement for privileged instructions to execute and 
CRING is the only field that controls access to memory. The PS.UM bit is named User 
Vector Mode and has nothing to do with privilege for either instructions or memory ac-
cess. It controls only which exception vector is taken for general exceptions.

4.6.1.3  Overview of Attributes

Both page table entries (PTEs) and TLB entries store attribute bits that control whether 
and how the processor accesses memory. The number of potential attributes required 
by systems is large; to encode all the access capabilities required by any potential sys-
tem would make this field too big to fit into a 4-byte PTE. However, the subset of values 
required for any particular system is usually much smaller. Each memory protection and 
translation option has a set of attributes, each of which encodes a set of capabilities 
from Table 4–99 for loads along with a set for stores and a set for instruction fetches. 
More capabilities are likely to be added in future implementations.

Table 4–99.  Access Characteristics Encoded in the Attributes 
Characteristic Description Used by
Invalid Exception on access Fetch, Load, Store
Isolate Read/write cache contents regardless of tag compare Load, Store

Bypass
Ignore cache contents regardless of tag compare — always 
access memory for this page

Fetch, Load, Store

No-allocate Do not refill cache on miss Fetch, Load, Store
Write-through Write memory in addition to DataCache Store

Guarded
Access bytes on this page exactly when required by the 
program (i.e. neither speculative references to reduce latency 
nor multiple accesses are allowed).

Load1

1. Instruction fetch is always non-guarded. Stores are always guarded.
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The assignment of capabilities to the attribute field of PTEs may be done with only one 
encoding for each distinct set of capabilities, or in such a way that each characteristic 
has its own bit, or anything in between. Often, single bits are used for a valid bit and a 
write-enable. For a valid bit, all of the attribute values with this bit zero would specify the 
Invalid characteristic so that any access causes an InstFetchProhibitedCause, 
LoadProhibitedCause, or StoreProhibitedCause exception, depending on the 
type of access. Similarly for the write-enable bit, all attribute values with write-enable 
zero would specify the Invalid characteristic to cause a StoreProhibitedCause 
exception on any store.

For systems that implement demand paging, software requires a page dirty bit to indi-
cate that the page has been modified and must be written back to disk if it is replaced. 
This may be provided by creating a write-enable bit as described above, and using it as 
the per-page dirty bit. The first write to a clean (non-dirty) page causes a 
StoreProhibitedCause exception. The exception handler checks one of the soft-
ware bits, which indicates whether the page is really writable or not; if it is, it then sets 
the hardware write-enable bit in both the TLB and the page table, and continues execu-
tion.

4.6.2 The Memory Access Process

All accesses to memory, whether to cache, local memories, XLMI, or PIF and whether 
caused by instruction fetch, the instructions themselves, or hardware TLB refill, follow 
certain steps. Following is a short description of these steps; each is discussed in more 
detail in Section 4.6.2.1 through Section 4.6.2.6.

1. Choose the TLB: Determine from the instruction opcode or the reason for hard-
ware access, which TLB if any, is used for the access (see Section 4.6.2.1 on 
page 146 for details).

2. Lookup in the TLB: In that TLB, find an entry whose virtual page number 
matches the upper bits of the virtual address of the access and, for appropriate 
options, whose ASID matches one of the entries in the RASID register. Exactly 
one match is needed to continue beyond this point, although exceptions may be 
handled and the memory access process restarted (see Section 4.6.2.2 on 
page 147 for details).

3. Check the access rights: If the attribute is invalid or, for appropriate options, if 
the ring corresponding the ASID matched in the RASID register is too low, raise 
an exception. The operating system may, among other choices, modify the TLB 
entries and retry the access (see Section 4.6.2.3 on page 148 for details).

4. Direct the access to local memory: If the physical address of the access 
matches an instruction RAM or ROM, a data RAM or ROM, or an XLMI port then 
direct the access to that local memory or XLMI. An exception is possible at this 
stage for certain conditions, such as attempting to write to a ROM (see 
Section 4.6.2.4 on page 148 for details).
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5. Direct the access to PIF: For the given cache configuration and using the at-
tribute, determine whether to execute the required access on the processor in-
terface bus (PIF) and make that access if necessary (see Section 4.6.2.5 on 
page 150 for details).

6. Direct the access to cache: Using the cache that corresponds to the TLB in 
Step 1 above, look up the memory location in the cache, using the value if it is 
there. If not, fill the cache from the PIF and then do the access (see 
Section 4.6.2.6 on page 150 for details).

Logically, the steps are done in order. The TLB lookup is done first (in steps 1 through 3 
above) and the memory access afterwards (in steps 4 through 6 above). For perfor-
mance reasons, they are actually done in parallel. This has two consequences:
1. First, the virtual and physical addresses of an access to an XLMI port must be iden-

tical so that the full address can be provided at the desired time. 
2. Second, for all other local memory accesses and cacheable addresses, the index 

bits of the cache or local memory must be the same in both virtual and physical ad-
dress. This means that caches which contain ways larger than the smallest page 
size in the system require “page coloring” as described in Section 4.6.1.1 on 
page 139.

For local memories, the second consequence requires a similar restriction on how they 
can be mapped. Note that local memories do not require that sequential virtual pages be 
mapped to sequential physical pages, but only that each virtual page be mapped to a 
physical page with which it shares the values of index bits.

For the purposes of understanding exceptions raised by memory accesses, all the steps 
above are done sequentially and the first exception encountered takes priority over later 
ones. For performance reasons, again, all steps are done in parallel and the results pri-
oritized afterward.

The above steps are further expanded in the following subsections.

4.6.2.1  Choose the TLB

Several instructions do not actually address memory. They simply use the bits of an ad-
dress to access a cache and do something directly to it. The following groups of instruc-
tions have this property:

- III, IIU
- DII, DIU, DIWB, DIWBI
- LICT, SICT, LICW, SICW
- LDCT, SDCT
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For each of these instructions, no TLB is accessed and the remainder of the steps are 
not followed. No memory access exceptions are possible as the addresses are not really 
addresses but only pointers to cache locations.

For the data accesses of instructions IHI, IHU, IPF, and IPFL, as well as all instruction 
fetches, the instruction TLB is used for subsequent steps.

For the data accesses of all other instructions and for the hardware TLB refill accesses 
(regardless of which TLB is being refilled) the data TLB is used for subsequent steps.

The above choices are reflected in Table 4–100 in the second column.

For compatibility the two TLBs should never give conflicting translations or protection at-
tributes for any access as future processors may implement them with only a single set 
of entries.

4.6.2.2  Lookup in the TLB

Each TLB lookup takes a virtual address as an operand and produces a physical ad-
dress, a lookup ring, and attributes as a result. This process is described in more detail 
in Section 4.6.1.1. Each way of the TLB is read using the appropriate address bits for 
that way as index bits. For variable sized ways, the ITLBCFG or DTLBCFG register helps 
determine which address bits are the index bits.

For options without ASIDs (Region Protection Option), a way matches the access if its 
virtual page number (VPN) matches the VPN of the access. The lookup ring produced is 
defined to be 0.

For options with ASIDs (MMU Option), a way matches the access if its Virtual Page 
Number (VPN) matches the VPN of the access and the ASID of the way matches one of 
the ASIDs in the RASID register. The lookup ring is determined by which ASID in the 
RASID register is matched. Because the four entries in the RASID register are required 
to be different and non-zero, the lookup ring is well determined.

There should not be a match for more than one of the ways. However, this condition cur-
rently raises an InstTLBMultiHitCause or a LoadStoreTLBMultiHitCause ex-
ception as a debugging aid. If two entries contain the same VPN, but different ASIDs, 
they may co-exist in the TLB at the same time as long as the RASID never contains both 
ASIDs at the same time.

If none of the ways match, options without auto-refill ways (Region Protection Option) 
will raise an InstTLBMissCause or a LoadStoreTLBMissCause exception so that 
system software can take appropriate action and possibly retry the access. Options with 
auto-refill ways (MMU Option) will, automatically in hardware, use PTEVADDR to access 
page tables in memory and replace an entry in one of the auto-refill ways. The access 
will then be automatically retried. An error of any sort during the automatic refill process 
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will raise an InstTLBMissCause or a LoadStoreTLBMissCause exception to be 
raised so that system software can take appropriate action and possibly retry the ac-
cess.

If no exception is raised, the physical page number and attributes of the matching entry 
along with the lookup ring defined above are the results of the lookup and the access 
continues with the next step.

4.6.2.3  Check the Access Rights

First, the lookup ring of the entry is checked against the ring of the access. The ring of 
the access is usually CRING, but for L32E and S32E, for example, it is PS.RING instead. 
If the lookup ring of the entry is smaller than the ring of the access, an 
InstFetchPrivilegeCause or a LoadStorePrivilegeCause exception is raised. 
This situation means that an instruction has attempted access to a region of memory at 
a lower numbered ring than the one for which it has privilege.

Second, the attribute of the lookup is checked for validity. If the attribute is not valid, an 
exception is raised. If the access chose the Instruction TLB in Section 4.6.2.1, it raises 
an InstFetchProhibitedCause exception. If it chose the data TLB, it raises either a 
LoadProhibitedCause exception or a StoreProhibitedCause exception, depend-
ing on whether it was a load or a store.

If no exception is raised, the access continues with the next step using the physical ad-
dress and the attribute (which is known to be valid for access, but may still affect how 
caches are used).

4.6.2.4  Direct the Access to Local Memory

The physical address of each access is compared to the address ranges of any instruc-
tion RAM, instruction ROM, data RAM, data ROM, or XLMI options that may exist in the 
processor. Table 4–100 indicates what will happen in the case that an access initiated 
by what is indicated in the Instruction column (which will use the TLB in the second col-
umn) if its address compares to an (abbreviated) option in one of the last six columns. 
OK means the access is completed normally. NOP means the access is completed but 
by its nature does nothing. IFE and LSE mean that an exception is raised. TLBI and 
TLBD mean that an InstTLBMissCause or a LoadStoreTLBMissCause exception is 
raised. Undef means the behavior is not defined.
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Using the definition of guarded in Table 4–99, instruction-fetch accesses are never 
guarded. Stores are always guarded. Loads to instruction RAM, instruction ROM, data 
RAM, and data ROM are never guarded. These ports are assumed to be connected only 
to devices with memory semantics so that no guarding is needed for loads. Loads to 

Table 4–100.  Local Memory Accesses 

Instruction TLB Used1 Inst-
RAM

Inst-
ROM

Data-
RAM

Data-
ROM XLMI

Instruction-fetch ITLB OK OK IFE2 IFE2 IFE2

IHI, IHU, IPF ITLB NOP NOP NOP NOP NOP
III, IIU none — — — — —
IPFL ITLB IFE5 IFE5 IFE2 IFE2 IFE2

L32I, L32R DTLB OK3 OK3 OK OK OK
L8UI, L16SI, L16UI, L32AI, 
L32E, FP Loads, MAC16 Loads

DTLB LSE4 LSE4 OK OK OK

LICT, LICW, LDCT none — — — — —
S32I DTLB OK3 LSE4 OK LSE4 OK
S8I, S16I, S32E, S32RI, FP 
Stores

DTLB LSE4 LSE4 OK LSE4 OK

S32C1I DTLB LSE4 LSE4 OK7 LSE4 Undef
SICT, SICW, SDCT none — — — — —
DHI, DHU, DHWB, DHWBI DTLB NOP NOP NOP NOP NOP
DII, DIU, DIWB, DIWBI none — — — — —
DPFR, DPFRO, DPFW, DPFWO DTLB NOP NOP NOP NOP NOP
DPFL DTLB LSE4 LSE4 LSE6 LSE6 LSE6

Hardware ITLB Refill DTLB TLBI8 TLBI8 OK OK OK
Hardware DTLB Refill DTLB TLBD8 TLBD8 OK OK OK
Designer defined loads DTLB LSE4 LSE4 OK OK OK
Designer defined stores DTLB LSE4 LSE4 OK LSE4 OK
1. As described in Section 4.6.2.1 on page 146
2. Raises exception - InstFetchErrorCause
3. These accesses may be slow in some implementations.
4. Raises exception - LoadStoreErrorCause
5. Raises exception - InstFetchErrorCause - but not in all implementations
6. Raises exception - LoadStoreErrorCause - but not in all implementations
7. Works in newer implementations but in some older implementations raises an exception.
8. Raises exception - InstTLBMissCause or a LoadStoreTLBMissCause depending on the original access.
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XLMI are only guarded in the sense that the load will be retired only under the conditions 
for a guarded access. For all these memories, assertion of the memory enable is no 
guarantee that the load was needed.

If none of the comparisons produces a match, the access continues with the next step 
using the physical address and the attribute. 

4.6.2.5  Direct the Access to PIF

The access is sent to the processor interface if any of the following is true:
The attribute indicates that the cache should be bypassed.
The chosen TLB in Section 4.6.2.1 and in Table 4–100 is the ITLB and the Instruc-
tion Cache Option is not configured.
The chosen TLB in Section 4.6.2.1 and in Table 4–100 is the DTLB and the Data 
Cache Option is not configured.

Using the definition of guarded in Table 4–99 on page 144, instruction-fetch accesses to 
the PIF are never guarded. Stores to the PIF are always guarded. Loads that are sent to 
the PIF under this section (without being cached) are guarded if the attribute says that 
they should be.

If the conditions of this section are not met, the access is cached and continues with the 
next step using the physical address and the attribute.

4.6.2.6  Direct the Access to Cache

The access is cached. The attribute determines how the cache operates, including the 
possibility of a write-through to the PIF.

The concept of guarding cannot be carried out for loads through the cache. Extra bytes 
have been loaded simply to fill the cache line and the line may have been filled long be-
fore the access. Inherently, the line is filled a different number of times than an access is 
executed and the line may be invalidated or evicted at any time and refilled later. Cach-
ing should not be used on ranges of memory address where guarding is important.

4.6.3 Region Protection Option

The simplest of the options, the Region Protection Option, provides a protection field for 
each of the eight 512 MB regions in the address space. The field can allow access to the 
region and it can set caching characteristics for the region, such as whether or not the 
cache is used and if it is write-through or write-back.

Prerequisites: Exception Option (page 82)
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Incompatible options: MMU Option (page 158)

This simple option is built from the capabilities discussed in the introduction 
(Section 4.6.1). It uses RingCount = 1, so the processor can always execute privileged 
instructions. It sets ASIDBits to 0, which disables the ASID feature. The instruction 
and data TLBs are programmed to each have one way of eight entries, and the VPNs 
(virtual page numbers) and PPNs (physical page numbers) of these entries are constant 
and hardwired to the identity map (that is, PPN = VPN). Only the attributes are not con-
stant; they are writable using the WITLB and WDTLB instructions.

4.6.3.1  Region Protection Option Architectural Additions

Table 4–101 through Table 4–103 show this option’s architectural additions. 

Table 4–101.  Region Protection Option Exception Additions 

Exception Description EXCCAUSE 
value

InstFetchProhibitedCause Instruction fetch is not allowed in region 20
LoadProhibitedCause Load is not allowed in region 28
StoreProhibitedCause Store is not allowed in region 29

Table 4–102.  Region Protection Option Processor-State Additions 
Register 
Mnemonic Quantity Width

(bits) Register Name R/W Access

ITLB Entries 8 4 Instruction TLB entries R/W see Table 4–103
DTLB Entries 8 4 Data TLB entries R/W see Table 4–103

Table 4–103.  Region Protection Option Instruction Additions 
Instruction1 Format Definition
IDTLB RRR Invalidate data TLB entry
IITLB RRR Invalidate instruction TLB entry
PDTLB RRR Probe data TLB
PITLB RRR Probe instruction TLB
RDTLB0 RRR Read data TLB virtual
RDTLB1 RRR Read data TLB translation
RITLB0 RRR Read instruction TLB virtual
1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
Xtensa Instruction Set Architecture (ISA) Reference Manual 151



Chapter 4. Architectural Options
4.6.3.2  Formats for Accessing Region Protection Option TLB Entries

During normal operation when instructions and data are being accessed from memory, 
only lookups are being done in the TLBs. For maintenance of the TLBs, however, the 
entries in the TLBs are accessed by the instructions in Table 4–103. Note that unused 
bits at Bit 12 and above are ignored on write, and zero on read, so that those bits may 
simply contain the address for access to all ways of both TLBs. Unused bits at Bit 11 and 
below are required to be zero on write and undefined on read for forward compatibility.

The format of the as register used in all instructions in the table is shown in Figure 4–21. 
The upper three bits are used as an index among the TLB entries just as they would be 
when addressing memory. They are the Virtual Page Number (VPN) or upper three bits 
of address. The remaining bits are ignored.

Figure 4–21.  Region Protection Option Addressing (as) Format for WxTLB, RxTLB1, & PxTLB

The WITLB and WDTLB instructions write the TLB entries. The as register is formatted 
according to Figure 4–21, while the at register is formatted according to Figure 4–22. 
The attribute for the region is described in detail in Section 4.6.3.3. The remaining bits 
are ignored or required to be zero.

After modifying any TLB entry with a WITLB instruction, an ISYNC must be executed be-
fore executing any instruction from that region. In the special case of the WITLB chang-
ing the attribute of its own region, the ISYNC must immediately follow the WITLB and 
both must be within the same memory region and, if the region is cacheable, within the 
same cache line.

RITLB1 RRR Read instruction TLB translation
WDTLB RRR Write data TLB
WITLB RRR Write instruction TLB

31 29 28 0

VPN Ignored

3 29

Table 4–103.  Region Protection Option Instruction Additions (continued)
Instruction1 Format Definition

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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Figure 4–22.  Region Protection Option Data (at) Format for WxTLB

The RITLB0 and RDTLB0 instructions exist under this option but do not return interest-
ing information because the entire VPN is used as an index. The as register is formatted 
according to Figure 4–21. The read instructions return zero in the at register.

The RITLB1 and RDTLB1 instructions return the at data format in Figure 4–23. The At-
tribute for the region is described in detail in Section 4.6.3.3. The VPN is returned in the 
upper three bits as the Physical Page Number (PPN) because there is no translation. 
The remaining bits are zero or undefined. The as register is formatted according to 
Figure 4–21.

Figure 4–23.  Region Protection Option Data (at) Format for RxTLB1

The PITLB and PDTLB instructions exist under this option but do not return interesting 
information because all accesses hit in the respective TLBs and the TLBs have only a 
single way. The as register is formatted according to Figure 4–21. The TLB probe in-
structions return the at data format in Figure 4–24. The VPN is returned in the upper 
bits. The low bit is set because the probe always hits and the remaining bits are zero or 
undefined.

Figure 4–24.  Region Protection Option Data (at) Format for PxTLB 

The IITLB and IDTLB instructions exist under this option and their as register is for-
matted according to Figure 4–21, but they have no effect because the entries cannot be 
removed from the respective TLBs.

31 12 11 4 3 0

Ignored Zero Attribute

20 8 4

31 29 28 12 11 4 3 0

PPN Zero Undefined Attribute

3 17 8 4

31 29 28 12 11 1 0

VPN Zero Undefined 1

3 17 11 1
Xtensa Instruction Set Architecture (ISA) Reference Manual 153



Chapter 4. Architectural Options
4.6.3.3  Region Protection Option Memory Attributes

The memory attributes written into the TLB entries by the WxTLB instructions and read 
from them by the RxTLB1 instructions control access to memory and, where there is a 
cache, how the cache is used. Table 4–104 shows the meanings of the attributes for in-
struction fetch, data load, and data store. For a more detailed description of the memory 
access process and the place of these attributes in it, see Section 4.6.2. 

The first column in Table 4–104 indicates the attribute attribute from the TLB while the 
remaining columns indicate various effects on the access. The columns are described in 
the following bullets:

Attr — the value of the 4-bit Attribute field of the TLB entry.
Rights — whether the TLB entry may successfully translate a data load, a data 
store, or an instruction fetch. 
- The first character is an r if the entry is valid for a data load and a dash ("-")if 

not. 
- The second character is a w if the entry is valid for a data store and a dash  

("-")if not. 
- The third character is an x if the entry is valid for an instruction fetch and a dash 

("-")if not. 
If the translation is not successful, an exception is raised.
Local memory accesses (including XLMI) consult only the Rights column.
WB — some rows are split by whether or not the configured cache is writeback or 
not. Rows without an entry apply to both cache types.
Meaning for Cache Access — the verbal description of the type of access made to 
the cache.
Access Cache — indicates whether the cache provides the data.
- The first character is an h if the cache provides the data when the tag indicates 

hit and a dash ("-")if it does not. 
- The second character is an m if the cache provides the data when the tag indi-

cates a miss and a dash ("-")if it does not. This capability is used only for Iso-
late mode.

Fill Cache — indicates whether an allocate and fill is done to the cache if the tag in-
dicates a miss.
- The first character is an r if the cache is filled on a data load and a dash ("-")if 

it is not. 
- The second character is a w if the cache is filled on a data store and a dash ("-

")if it is not. 
- The third character is an x if the cache is filled on an instruction fetch and a 

dash ("-")if it is not.
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Guard Load — refers to the guarded attribute as described in Table 4–99 on 
page 144. Stores are always guarded and instruction fetches are never guarded, but 
loads are guarded where there is a “yes” in this column. Local memory loads are not 
guarded.
Write Thru — indicates whether a write is done through the PIF interface.
- The first character is an h if a Write Thru occurs when the tag indicates hit and a 

dash ("-")if it does not. 
- The second character is an m if a Write Thru occurs when the tag indicates a 

miss and a dash ("-")if it does not.

Writes to local memories are never Write-Thru. In most implementations, a write-thru will 
only occur after any needed cache fill is complete.

All attribute entries in the ITLB and DTLB are set to cache bypass (4’h2) after reset.

In the absence of the Instruction Cache Option, Cached regions behave as Bypass re-
gions on instruction fetch. In the absence of the Data Cache Option, Cached regions be-
have as Bypass regions on data load or store. If the Data Cache is not configured as 
writeback (Section 4.5.5.1 on page 119) Attributes 4 and 5 behave as Attribute 1 instead 
of as they are listed in Table 4–104.

After changing the attribute of any memory region with a WITLB instruction, an ISYNC 
must be executed before executing any instruction from that region. In the special case 
of the WITLB changing the attribute of its own region, the ISYNC must immediately fol-
low the WITLB and both must be within the same cache line.

Table 4–104.  Region Protection Option Attribute Field Values 

Attr Rights Meaning for Cache Access Access 
Cache

Fill 
Cache

Guard 
Load

Write 
Thru

0 rw- Cached, No Allocate h- --- - hm

1 rwx Cached, WrtThru h- r-x - hm

2 rwx Bypass cache -- --- yes hm

3 --x Cached1 h- --x - --

4 rwx Cached, WrtBack alloc h- rwx - --

5 rwx Cached, WrtBack noalloc1 h- r-x - -m

6-13 --- Reserved2 — — — —
14 rw- Cache Isolated3 hm --- - --

15 --- illegal2 -- --- - --

1 Attribute not supported in all implementations. Please refer to a specific Xtensa processor data book for supported attributes.
2 Raises exception. EXCCAUSE is set to InstFetchProhibitedCause, LoadProhibitedCause, or StoreProhibitedCause depending on access type
3 For test only, implementation dependent, uses data cache like local memories and ignores tag.
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After changing the attribute of a region by WDTLB, the operation of loads from and stores 
to that region are undefined until a DSYNC instruction is executed.

4.6.4 Region Translation Option

Building on the Region Protection Option is the Region Translation Option, which adds a 
virtual-to-physical translation on the upper three bits of the address. Thus, each of the 
eight 512 MB regions, in addition to the attributes provided by the Region Protection Op-
tion, may be redirected to access a different region of physical address space.

Prerequisites: Exception Option (page 82) and Region Protection Option (page 150)
Incompatible options: MMU Option (page 158)

With this option, the Physical Page Numbers (PPNs) of each of the TLB entries is now 
writable instead of constant and identity mapped. In this way, the same region of memo-
ry may be accessed with different attributes by the use of different virtual addresses.

This simple option is built from the capabilities discussed in the introduction (see 
Section 4.6.1). It uses RingCount = 1, so the processor can always execute privileged 
instructions. It sets ASIDBits to 0, which disables the ASID feature. The instruction 
and data TLBs are programmed to each have one way of eight entries, and only the at-
tributes and Physical Page Numbers (PPNs) are not constant; they are writable using 
the WITLB and WDTLB instructions.

4.6.4.1  Region Translation Option Architectural Additions

There are no new exceptions, no new state registers, and no new Instructions added to 
those in the Region Protection Option. The TLB entries contain three additional bits of 
state. Access to these bits is described in Section 4.6.4.2.

4.6.4.2  Region Translation Option Formats for Accessing TLB Entries

During normal operation when instructions and data are being accessed from memory, 
only lookups are being done in the TLBs. For maintenance of the TLBs, however, the 
entries in the TLBs are accessed by the instructions in Table 4–103 on page 151. Note 
that unused bits at Bit 12 and above are ignored on write and zero on read so that those 
bits may simply contain the address for access to all ways of both TLBs. Unused bits at 
Bit 11 and below are required to be zero on write and undefined on read for forward 
compatibility.

The register formats used by the TLB instructions are very similar to those described in 
Section 4.6.3.2 for the Region Protection Option. The only difference is the presence of 
a Physical Page Number (PPN) in the upper three bits of the WxTLB, RxTLB1, and 
PxTLB register formats.
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The format of the as register used in all instructions in the table is shown in Figure 4–25. 
The upper three bits are used as an index among the TLB entries just as they would be 
when addressing memory. They are the Virtual Page Number (VPN) or upper three bits 
of address. The remaining bits are ignored.

Figure 4–25.  Region Translation Option Addressing (as) Format for WxTLB, RxTLB1, & PxTLB

The WITLB and WDTLB instructions write the TLB entries. The as register is formatted 
according to Figure 4–25, while the at register is formatted according to Figure 4–26. 
The attribute for the region is described in detail in Section 4.6.3.3 on page 154. The re-
maining bits are ignored or required to be zero.

After modifying any TLB entry with a WITLB instruction, an ISYNC must be executed be-
fore executing any instruction from that region. In the special case of the WITLB chang-
ing the attribute of its own region, the ISYNC must immediately follow the WITLB and 
both must be within the same memory region and, if the region is cacheable, within the 
same cache line.

After modifying any TLB entry with a WDTLB instruction, the operation of loads from and 
stores to that region are undefined until a DSYNC instruction is executed.

Figure 4–26.  Region Translation Option Data (at) Format for WxTLB

The RITLB0 and RDTLB0 instructions exist under this option but do not return interest-
ing information because the entire VPN is used as an index. The as register is formatted 
according to Figure 4–25. The read instructions return zero in the at register.

The RITLB1 and RDTLB1 instructions return the at data format in Figure 4–27. The at-
tribute for the region is described in detail in Section 4.6.3.3. The Physical Page Number 
(PPN) is returned in the upper three bits. The remaining bits are zero or undefined. The 
as register is formatted according to Figure 4–25.

31 29 28 0

VPN Ignored

3 29

31 12 11 4 3 0

PPN Ignored Zero Attribute

3 17 8 4
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Figure 4–27.  Region Translation Option Data (at) Format for RxTLB1

The PITLB and PDTLB instructions return the at data format in Figure 4–28. The Virtual 
Page Number (VPN) is returned in the upper bits. The low bit is set because the probe 
always hits, and the remaining bits are zero or undefined. The as register is formatted 
according to Figure 4–25. These instructions work for their intended purpose, but do not 
provide useful information under this simple option because the TLBs always hit and 
have only a single way.

Figure 4–28.  Region Translation Option Data (at) Format for PxTLB 

The IITLB and IDTLB instructions exist under this option and their as register is for-
matted according to Figure 4–25, but they have no effect because the entries cannot be 
removed from the respective TLBs.

4.6.4.3  Region Translation Option Memory Attributes

The memory attributes written into the TLB entries by the WxTLB instructions and read 
from them by the RxTLB1 instructions are exactly the same as under the Region Protec-
tion Option.

As with the Region Protection Option, all attributes in both TLBs are set to cache bypass 
(4’b0010) after reset. In addition, the translation entries in both TLBs are set to identity 
map after reset.

4.6.5 MMU Option

The MMU Option is a memory management unit created to run protected operating sys-
tems such as Linux on the Xtensa processor with demand paging hardware with a mem-
ory-based page table.

Prerequisites: Exception Option (page 82)

31 29 28 12 11 4 3 0

PPN Zero Undefined Attribute

3 17 8 4

31 29 28 1 0

VPN Zero Undefined 1

3 17 11 1
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Incompatible options: Region Protection Option (page 150), Extended L32R Option 
(page 56)

This option is also built from the capabilities discussed in the introduction 
(Section 4.6.1). It uses RingCount = 4 and only Ring 0 may execute privileged instruc-
tions. The option sets ASIDBits to 8, which allows for lower TLB management over-
head.

The instruction and data TLBs are programmed to have seven and ten ways, respective-
ly (see Section 4.6.5.3). Some of the ways are constants; others can be set to arbitrary 
values. Still others auto-refill from a page table in memory that contains 4-byte PTEs, 
each mapping a 4kB page with a 20-bit PPN, a 2-bit ring number, a 4-bit attribute, and 6 
bits reserved for software. For a programmer’s view of the MMU, refer to the Xtensa 
Microprocessor Programmer’s Guide.

4.6.5.1  MMU Option Architectural Additions

Table 4–105 through Table 4–108 show this option’s architectural additions.

Table 4–105.  MMU Option Processor-Configuration Additions 
Parameter Description Valid Values

NIREFILLENTRIES
Number of auto-refill entries in the ITLB 
(divided among 4 ways)

16,32
(4, 8 entries per TLB way)

NDREFILLENTRIES
Number of auto-refill entries in the DTLB 
(divided among 4 ways)

16,32
(4, 8 entries per TLB way)

IVARWAY56
Ways 5&6 of the ITLB can be variable for 
greater flexibility in mapping memory

Variable or Fixed1

DVARWAY56
Ways 5&6 of the DTLB can be varialble 
for greater flexitiblity in mapping memory

Variable or Fixed1

1. Implementations may allow only Fixed, only Variable or a choice of either for this value.

Table 4–106.  MMU Option Exception Additions 

Exception Description EXCCAUSE 
Value

PrivilegedCause Privileged instruction attempted with CRING ≠ 0 8
InstTLBMissCause Instruction fetch finds no entry in ITLB 16
InstTLBMultiHitCause Instruction fetch finds multiple entries in ITLB 17
InstFetchPrivilegeCause Instruction fetch matching entry requires lower CRING 18
InstFetchProhibitedCause Instruction fetch is not allowed in region 20
LoadStoreTLBMissCause Load/store finds no entry in DTLB 24
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LoadStoreTLBMultiHitCause Load/store finds multiple entries in DTLB 25
LoadStorePrivilegeCause Load/store matching entry requires lower CRING 26
LoadProhibitedCause Load is not allowed in region 28
StoreProhibitedCause Store is not allowed in region 29

Table 4–107.  MMU Option Processor-State Additions 

Register 
Mnemonic Quantity Width 

(bits) Register Name R/W
Special 
Register 
Number1

PS.RING
1 2 Privilege level (see Table 4–63 on 

page 87)
R/W 230

PTEVADDR 1 32 Page Table Virtual Address R/W 83
RASID 1 32 Per-ring ASIDs R/W 90
ITLBCFG 1 2/4 Instruction TLB configuration R/W 91
DTLBCFG 1 2/4 Data TLB configuration R/W 92
ITLB Entries 24,32,40,482 variable Instruction TLB entries R/W Table 4–108
DTLB Entries 27,35,43,512 variable Data TLB entries R/W Table 4–108
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 5–127 on 

page 205. The TLB Entries are not Special Registers, but are accessed by the instructions in Table 4–108 on page 160.
2. See Section 4.6.5.3 on page 163 for more information on TLB structure.

Table 4–108.  MMU Option Instruction Additions 
Instruction1 Format Definition
IDTLB RRR Invalidate data TLB entry
IITLB RRR Invalidate instruction TLB entry
PDTLB RRR Probe data TLB
PITLB RRR Probe instruction TLB
RDTLB0 RRR Read data TLB virtual
RDTLB1 RRR Read data TLB Translation
RITLB0 RRR Read instruction TLB virtual
1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.

Table 4–106.  MMU Option Exception Additions (continued)

Exception Description EXCCAUSE 
Value
160 Xtensa Instruction Set Architecture (ISA) Reference Manual



Chapter 4. Architectural Options
4.6.5.2  MMU Option Register Formats

This section describes the address and data formats needed for reading and writing the 
instruction and data TLBs.

PTEVADDR

Because four ways of each TLB are configured as AutoRefill, the MMU Option supports 
hardware refill of the TLB from a page table (Section 4.6.5.9). The base virtual address 
of the current page table is specified in the PTEBase field of the PTEVADDR register. 
When read, PTEVADDR returns the PTEBase field in its upper bits as shown in 
Figure 4–29, EXCVADDR31..12 in the field labeled VPN below followed by two zero bits. 
When PTEVADDR is written, only the PTEBase field is modified. PTEVADDR is undefined 
after reset. Figure 4–29 shows the PTEVADDR register format.

Figure 4–29.  MMU Option PTEVADDR Register Format

RASID

The Ring ASID (RASID) register holds the current ASIDs for each ring. The register is 
divided into four 8-bit sections, one for each ASID. The Ring 0 ASID is hardwired to 1. 
The operation of the processor is undefined if any two of the four ASIDs are equal or if 
it contains an ASID of zero. RASID is 32’h04030201 after reset. Figure 4–30 shows 
the RASID register format.

RITLB1 RRR Read instruction TLB translation
WDTLB RRR Write data TLB
WITLB RRR Write instruction TLB

31 22 21 2 1 0

PTEBase VPN 0

10 20 2

Table 4–108.  MMU Option Instruction Additions (continued)
Instruction1 Format Definition

1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
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Figure 4–30.  MMU Option RASID Register Format

ITLBCFG

Because one or three ways of the instruction TLB are configured with variable page siz-
es (depending on whether IVARWAY56 is, respectively, fixed or variable), the ITLBCFG 
register specifies the page size for those ways. Regardless of IVARWAY56, the Size 
field in bits[17:16] of the register controls the size of the entries in Way 4 and has the 
values 2’b00 = 1 MB, 2’b01 = 4 MB, 2’b10 = 16 MB, and 2’b11 = 64 MB. If IVARWAY56 is 
Variable, the Sz field in bit[20] of the register controls the size of the entries in Way 5 and 
has the values 1’b0 = 128MB and 1’b1 = 256MB. If IVARWAY56 is Variable, the Sz field 
in bit[24] of the register controls the size of the entries in Way 6 and has the values 1’b0 
= 512MB and 1’b1 = 256MB. MBZ means “must be zero”. The entire TLB way should be 
invalidated when its size is changed. The ITLBCFG register is zero after reset. The fol-
lowing shows the ITLBCFG register format.

MMU Option ITLBCFG Register Format

DTLBCFG

Because one or three ways of the data TLB are configured with variable page sizes (de-
pending on whether DVARWAY56 is, respectively, fixed or variable), the DTLBCFG regis-
ter specifies the page size for those ways. Regardless of DVARWAY56, the Size field in 
bits[17:16] of the register controls the size of the entries in Way 4 and has the values 
2’b00 = 1 MB, 2’b01 = 4 MB, 2’b10 = 16 MB, and 2’b11 = 64 MB. If DVARWAY56 is Vari-
able, the Sz field in bit[20] of the register controls the size of the entries in Way 5 and 
has the values 1’b0 = 128MB and 1’b1 = 256MB. If DVARWAY56 is Variable, the Sz field 
in bit[24] of the register controls the size of the entries in Way 6 and has the values 1’b0 
= 512MB and 1’b1 = 256MB. MBZ means “must be zero”. The entire TLB way should be 
invalidated when its size is changed. The DTLBCFG register is zero after reset. 
Figure 4–31 shows the DTLBCFG register format.

31 24 23 16 15 8 7 0

Ring3 ASID Ring2 ASID Ring1 ASID 8’h01

8 8 8 8

31 25 24 23 21 20 19 18 17 16 15 0

MBZ Sz MBZ Sz MBZ Size MBZ

7 1 3 1 2 2 16
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Figure 4–31.  MMU Option DTLBCFG Register Format

4.6.5.3  The Structure of the MMU Option TLBs

The instruction TLB is 7-way set-associative. Ways 0-3 are AutoRefill ways used for 
hardware refill of 4 kB page table entries from the page table when no matching TLB en-
try is found. The AutoRefill ways contain a total of either 16 entries (four per way) or 32 
entries (eight per way) depending on NIREFILLENTRIES. Way 4 is a variable size way 
of four entries and is used for mapping large pages of 1 MB, 4 MB, 16 MB, or 64 MB as 
configured by the ITLBCFG register. The ASID fields in these ways are set to zero (in-
valid) after reset.

Way 5 (IVARWAY56 Fixed), with two constant entries, statically maps the 128 MB region 
32'hD0000000–32'hD7FFFFFF to the first 128 MB of physical memory 
(32'h00000000–32'h07FFFFFF) as cached memory (attribute 4’h7 as described in 
Section 4.6.5.10), and the next 128 MB region (32'hD8000000–32'hDFFFFFFF) to 
the same 128 MB of physical memory as cache bypassed memory (attribute 4’h3 as de-
scribed in Section 4.6.5.10). The ASID entries for both entries is 8’h01. These 128 MB 
regions are intended for the operating system kernel’s first 128 MB of code and data 
(see Figure 4–32). Using a pair of large static mappings reduces the load on the de-
mand refill portion of the instruction TLB and also provides access using two attributes 
for the same memory. Physical memory above the first 128 MB is accessed via dynami-
cally mapped virtual address space.

Way 5 (IVARWAY56 Variable), is a variable size way of four entries and is used for map-
ping very large pages of 128 MB or 256 MB as configured by the ITLBCFG register. The 
ASID fields in this way are set to zero (invalid) after reset. This way may be used to em-
ulateWay 5 (IVARWAY56 Fixed), or it may be used for a more flexible arrangement.

Way 6 (IVARWAY56 Fixed), also with 2 constant entries, statically maps the 256 MB re-
gion 32'hE0000000–32'hEFFFFFFF to the last 256 MB of physical memory 
(32'hF0000000–32'hFFFFFFFF) as cached memory (attribute 4’h7 as described in 
Section 4.6.5.10), and the next 256 MB region (32'hF0000000–32'hFFFFFFFF) to 
the same 256MB of physical memory as cache bypassed memory (attribute 4’h3 as de-
scribed in Section 4.6.5.10). The ASID entries for both entries is 8’h01. These 256 MB 
regions are intended for addressing the system peripherals (for example, a PCI or other 
I/O bus) and system ROM (see Figure 4–32).

31 25 24 23 21 20 19 18 17 16 15 0

MBZ Sz MBZ Sz MBZ Size MBZ

7 1 3 1 2 2 16
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Way 6 (IVARWAY56 Variable), is a variable size way of eight entries and is used for 
mapping very large pages of 512 MB or 256 MB as configured by the ITLBCFG register. 
The ASID fields in this way are set one and the Attribute fields in this way are set to 4’h2 
(Bypass) after reset, and the other fields are set so that this way directly maps all of 
memory after reset. This way may be used to emulate Way 6 (IVARWAY56 Fixed), it may 
be used to effectively "turn off" the ITLB, or it may be used for a more flexible arrange-
ment.

The data TLB is 10-way set-associative. It has the same seven ways as the instruction 
TLB above (using DTLBCFG/DVARWAY56, instead of ITLBCFG/IVARWAY56), with the 
addition of Ways 7-9, which are single-entry ways for 4 kB pages. These ways are in-
tended to hold translations required to map the page table for hardware refill and for en-
tries that are not to be replaced by refill. The ASID fields in these ways are set to zero 
(invalid) after reset.

All ASID fields in the ITLB and DTLB, except those in Way 5 & Way 6, are set to zero (in-
valid) after reset. ASID fields in Way 5 are set to zero (invalid) after reset if 
IVARWAY56/DVARWAY56 is Variable.

4.6.5.4  The MMU Option Memory Map

The memory map is determined by the TLB configurations given in Section 4.6.5.3. 
Figure 4–32 shows a graphical representation of the constant translations in Way 5 and 
Way 6 when IVARWAY56 and DVARWAY56 are Fixed, as well as the regions that are 
mapped by more flexible ways than these. Way 5 and Way 6 may be used to emulate 
this same arrangement when IVARWAY56 and DVARWAY56 are Variable.
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Figure 4–32.  MMU Option Address Map with IVARWAY56 and DVARWAY56 Fixed

This configuration provides both bypass and cached access to peripherals. Bypass ac-
cess is used for devices and cached access is used for ROMs, for example. It also pro-
vides bypass and cached access to the low 128 MB of memory. This allows system soft-
ware to access its memory without competing with user code for other TLB entries. 
These are available after reset. The large page way (Way 4) and the auto-refill ways 
(Ways 0-3) may be used to map as much additional space as desired (Section 4.6.5.9). 
In the data TLB, Ways 7-9 may be used to map single pages so that they are always 
available.

4.6.5.5  Formats for Writing MMU Option TLB Entries

During normal operation when instructions and data are being accessed from memory, 
only lookups are being done in the TLBs. For maintenance of the TLBs, however, the 
entries in the TLBs are accessed by the instructions in Table 4–108 on page 160.

Virtual Physical
FFFFFFFF FFFFFFFF

bypass peripherals
F0000000 F0000000

cached
E0000000
D8000000 bypass
D0000000 cached

mapped

08000000
00000000 00000000
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Writing the TLB with the WITLB and WDTLB instructions requires the formats for the as 
and at registers shown in Figure 4–33 and Figure 4–34. These figures show, in parallel, 
the formats for different ways of the cache and different conditions. For Ways 0-3, there 
are two conditions that depend on the configuration parameter NIREFILLENTRIES or 
NDREFILLENTRIES (see Figure 4–105 on page 159) and can have the values of 16 or 
32 auto-refill entries per TLB (four or eight per TLB way). For Way 4, there are four con-
ditions, which are the four values of the respectiveITLBCFG or DTLBCFG fields and indi-
cate the size of pages currently contained within that way. Ways 5 and 6 can be Fixed or 
Variable as determined by the IVARWAY56 and DVARWAY56 parameters. If they are vari-
able then there are still two conditions which are the two values of the respective ITLB-
CFG or DTLBCFG fields and indicate the size of pages currently contained within that 
way. Each row, then, contains the format for the way and condition indicated in the left 
column. Note that writing to Way-5 and Way-6 when the IVARWAY56 and DVARWAY56 
parameters are "Fixed" causes no changes because those ways are constant.

Writing ITLB Ways 7-15 or DTLB ways 10-15 is undefined.

The format of the as register used for the WITLB and WDTLB instructions is shown in 
Figure 4–33. The low order four bits contain the way to be accessed. The upper bits 
contain the Virtual Page Number (VPN). For clarity, the Index bits are separated out 
from the rest of the VPN in this figure. Note that unused bits at Bit 12 and above are ig-
nored so that those bits may simply contain the address for access to all ways of both 
TLBs. Unused bits at Bit 11 and below are reserved for forward compatibility. They may 
either be zero or they may be the result of the probe instruction (Section 4.6.5.7).
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Figure 4–33.  MMU Option Addressing (as) Format for WxTLB

The format of the at register used for the WITLB and WDTLB instructions is shown in 
Figure 4–34. The low order four bits contain the attribute to be written (see 
Section 4.6.5.10). The two bits above those contain the ring for which this TLB entry is 
to be written. The ASID taken from the RASID register (see Section 4.6.5.2) correspond-
ing to this ring is stored with the TLB entry. It is not possible to write an entry with an 
ASID which is not currently in the RASID register. The upper bits contain the Physical 
Page Number (PPN) of the translation. Way-5 and Way-6 are constant ways when the 
IVARWAY56 and DVARWAY56 parameters are "Fixed": The PPN remains as described in 
Section 4.6.5.3, the ASID is not written but always matches Ring 0, and the attribute re-
mains as described in Section 4.6.5.3, no matter what is in register at. As with the ad-
dress format, unused bits at Bit 12 and above are ignored so that a 20-bit PPN may be 
used with all ways of the TLB, and unused bits at Bit 11 and below are required to be 
zero for forward compatibility.

Way 31 30 29 28 27 26 25 24 23 22 21 20 19 15 14 13 12 11 4 3 2 1 0

0-3 (16entry) VPN without Index Index Reserved 4’h0,1,2,3

0-3 (32entry) VPN without Index Index Reserved 4’h0,1,2,3

4 (1MB) VPN without Index Index Ignored Reserved 4’h4

4 (4MB) VPN without Index Index Ignored Reserved 4’h4

4 (16MB) VPN without Index Index Ignored Reserved 4’h4

4 (64MB) VPN w/o Idx Index Ignored Reserved 4’h4

5 (Fixed) Ignored Reserved 4’h5

5 (128MB) VPN Index Ignored Reserved 4’h5

5 (256MB) VPN Index Ignored Reserved 4’h5

6 (Fixed) Ignored Reserved 4’h6

6 (512MB) Index Ignored Reserved 4’h6

6 (256MB) V Index Ignored Reserved 4’h6
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Figure 4–34.  MMU Option Data (at) Format for WxTLB

After modifying any TLB entry with a WITLB instruction, an ISYNC must be executed be-
fore executing any instruction that depends on the modification. The ITLB entry currently 
being used for instruction fetch may not be changed.

After modifying any TLB entry with a WDTLB instruction, the operation of loads and 
stores that depend on that TLB entry are undefined until a DSYNC instruction is execut-
ed.

4.6.5.6  Formats for Reading MMU Option TLB Entries

Reading the TLB with the RITLB0, RITLB1, RDTLB0, and RDTLB1 instructions requires 
the formats for the as and at registers shown in Figure 4–35 through Figure 4–37. 
These figures show, in parallel, the formats for different ways of the cache and different 
conditions. For Ways 0-3, there are two conditions that depend on the configuration pa-
rameter NIREFILLENTRIES or NDREFILLENTRIES (see Figure 4–105 on page 159) 
and can have the values of 16 or 32 auto-refill entries per TLB (four or eight per TLB 
way). For Way 4, there are four conditions, which are the four values of the respec-
tiveITLBCFG or DTLBCFG fields and indicate the size of pages currently contained within 

Way 31 29 28 27 26 25 24 23 22 21 20 19 18 17 12 11 6 5 4 3 0

0-3 (16entry) PPN 6’h00 Ring Attribute

0-3 (32entry) PPN 6’h00 Ring Attribute

4 (1MB) PPN Ignored 6’h00 Ring Attribute

4 (4MB) PPN Ignored 6’h00 Ring Attribute

4 (16MB) PPN Ignored 6’h00 Ring Attrbute

4 (64MB) PPN Ignored 6’h00 Ring Attribute

5 (Fixed) Ignored 6’h00 Ignored

5 (128MB) PPN Ignored 6’h00 Ring Attribute

5 (256MB) PPN Ignored 6’h00 Ring Attribute

6 (Fixed) Ignored 6’h00 Ignored

6 (512MB) PPN Ignored 6’h00 Ring Attribute

6 (256MB) PPN Ignored 6’h00 Ring Attribute

7-9(DTLB) PPN 6’h00 Ring Attribute

31 29 28 27 26 25 24 23 22 21 20 19 18 17 12 11 6 5 4 3 0
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that way. Ways 5 and 6 can be Fixed or Variable as determined by the IVARWAY56 and 
DVARWAY56 parameters. If they are variable then there are still two conditions which are 
the two values of the respective ITLBCFG or DTLBCFG fields and indicate the size of 
pages currently contained within that way. Each row, then, contains the format for the 
way and condition indicated in the left column. 

Reading ITLB ways 7-15 or DTLB ways 10-15 is undefined.

The format of the as register used for the RITLB0, RITLB1, RDTLB0, and RDTLB1 in-
structions is shown in Figure 4–35. The low order four bits contain the way to be access-
ed. Besides the Way bits, only the Index bits are needed for reading the TLB. Depending 
on the TLB way being accessed, and other conditions such as the size assigned to the 
variable size way or the number of auto refill entries in the TLB, different bits of address 
may be needed as shown. Note that unused bits at Bit 12 and above are ignored so that 
an entire 20-bit VPN may be used when accessing all ways of both TLBs. Unused bits at 
Bit 11 and below are reserved for forward compatibility. They may either be zero or they 
may be the result of the probe instruction (Section 4.6.5.7).

Figure 4–35.  MMU Option Addressing (as) Format for RxTLB0 and RxTLB1

Way 31 29 28 27 26 25 24 23 22 21 20 19 15 14 13 12 11 4 3 2 1 0

0-3 (16entry) Ignored Index Reserved 4’h0,1,2,3

0-3 (32entry) Ignored Index Reserved 4’h0,1,2,3

4 (1MB) Ignored Index Ignored Reserved 4’h4

4 (4MB) Ignored Index Ignored Reserved 4’h4

4 (16MB) Ignored Index Ignored Reserved 4’h4

4 (64MB) Ignored Index Ignored Reserved 4’h4

5 (Fixed) Ignored Ix Ignored Reserved 4’h5

5 (128MB) Ignored Index Ignored Reserved 4’h5

5 (256MB) Ig Index Ignored Reserved 4’h5

6 (Fixed) Ignored Ix Ignored Reserved 4’h6

6 (512MB) Index Ignored Reserved 4’h6

6 (256MB) Ig Index Ignored Reserved 4’h6

7-9(DTLB) Ignored Reserved 4’h7,8,9

31 29 28 27 26 25 24 23 22 21 20 19 15 14 13 12 11 4 3 2 1 0
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Because reading generates more information than can fit in one 32-bit register, there are 
two read instructions that return different values. The data resulting from the RITLB0 
and RDTLB0 instructions is shown in Figure 4–36. The low bits contain the ASID stored 
with the entry, while the upper bits contain the Virtual Page Number (VPN) without the 
Index bits that were used in the address of the read. Unused bits at Bit 12 and above of 
the data result of these instructions are defined to be zero so that the entire 20-bit field 
may always be used as a VPN whatever the size of the way. Unused bits at Bit 11 and 
below are undefined for forward compatibility.

Figure 4–36.  MMU Option Data (at) Format for RxTLB0

The data resulting from the RITLB1, and RDTLB1 instructions is shown in Figure 4–37. 
The low order four bits contain the attribute stored with the TLB entry (Section 4.6.5.10). 
The upper bits contain the Physical Page Number (PPN) of the entry. Unused bits at Bit 
12 and above of the data result of these instructions are defined to be zero so that the 
entire 20-bit field may always be used as a PPN, whatever the size of the way. Unused 
bits at Bit 11 and below are undefined for forward compatibility.

Way 31 30 29 28 27 26 25 24 23 22 21 15 14 13 12 11 8 7 0

0-3 (16entry) VPN without Index 2’b00 Undefined ASID

0-3 (32entry) VPN withoutIndex 3’b000 Undefined ASID

4 (1MB) VPN without Index 10’h000 Undefined ASID

4 (4MB) VPN without Index 12’h000 Undefined ASID

4 (16MB) VPN without Index 14’h0000 Undefined ASID

4 (64MB) VPN w/o Idx 16’h0000 Undefined ASID

5 (Fixed) 4’b1101 16’h0000 Undefined ASID

5 (128MB) VPN 17’h00000 Undefined ASID

5 (256MB) VPN 18’h00000 Undefined ASID

6 (Fixed) 3’b111 17’h00000 Undefined ASID

6 (512MB) 20’h00000 Undefined ASID

6 (256MB) V 19’h00000 Undefined ASID

7-9(DTLB) VPN Undefined ASID

31 30 29 28 27 26 25 24 23 22 21 15 14 13 12 11 8 7 0
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Figure 4–37.  MMU Option Data (at) Format for RxTLB1

4.6.5.7  Formats for Probing MMU Option TLB Entries

Probing the TLB with the PITLB and PDTLB instructions requires the formats for the as 
and at registers shown in Figure 4–38 and Figure 4–39. Unlike writing and reading the 
TLBs as explained in the previous two sections, the operation of probing a TLB begins 
without knowing the way containing the sought after value. The formats do not, there-
fore, vary with the way being accessed. The probe instructions answer the question of 
what entry in this TLB, if any, would be used to translate an access with a particular ad-
dress from a particular ring. The sought for address is given in the as register as shown 
in Figure 4–38 and the ring is given by PS.RING (not CRING, so that while PS.EXCM is 
set, a probe may be done for a user program). If, for example, there is an entry that 
matches in address, but its ASID does not match any ASID in the RASID register, or an 
entry that matches in address, but the ASID corresponds in the RASID register to a ring 
of lower number than the current PS.RING, the probe will not return a hit.

The format of the as register used for the PITLB and PDTLB instructions is shown in 
Figure 4–38. Any address may be used as input to the probe instructions.

Way 31 29 28 27 26 25 24 23 22 21 20 19 12 11 4 3 0

0-3 (16entry) PPN Undefined Attribute

0-3 (32entry) PPN Undefined Attribute

4 (1MB) PPN 8’h00 Undefined Attribute

4 (4MB) PPN 10’h000 Undefined Attribute

4 (16MB) PPN 12’h000 Undefined Attribute

4 (64MB) PPN 14’h0000 Undefined Attribute

5 (Fixed) 5’b00000 15’h0000 Undefined Attribute

5 (128MB) PPN 15’h0000 Undefined Attribute

5 (256MB) PPN 16’h0000 Undefined Attribute

6 (Fixed) 4’b1111 16’h0000 Undefined Attribute

6 (512MB) PPN 17’h0000 Undefined Attribute

6 (256MB) PPN 16’h0000 Undefined Attribute

7-9(DTLB) PPN Undefined Attribute

31 29 28 27 26 25 24 23 22 21 20 19 12 11 4 3 0
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Figure 4–38.  MMU Option Addressing (as) Format for PxTLB

The data resulting from the PITLB and PDTLB instructions is shown in Figure 4–39 and 
Figure 4–40. The low three/four bits contain the Way (if any), which would be used to 
translate the address and the next bit up is set if there is a translation in the TLB, and 
clear if there is not. Some bits are undefined for forward compatibility but the result is 
such that, if Hit=1, it may be used as the as register for WxTLB, RxTLB0, RxTLB1, or 
IxTLB.

Figure 4–39.  MMU Option Data (at) Format for PITLB

Figure 4–40.  MMU Option Data (at) Format for PDTLB

4.6.5.8  Format for Invalidating MMU Option TLB Entries

Invalidating the TLB with the IITLB and IDTLB instructions requires the formats for the 
as register shown in Figure 4–41. This figure shows, in parallel, the formats for different 
ways of the cache and different conditions. For Ways 0-3, there are two conditions that 
depend on the configuration parameter NIREFILLENTRIES or NDREFILLENTRIES 
(Figure 4–105) and can have the values of 16 or 32 auto-refill entries per TLB (4 or 8 per 
TLB way). For Way 4, there are four conditions, which are the four values of the respec-
tiveITLBCFG or DTLBCFG fields and indicate the size of pages currently contained within 
that way. Ways 5 and 6 can be Fixed or Variable as determined by the IVARWAY56 and 
DVARWAY56 parameters. If they are variable then there are still two conditions which are 
the two values of the respective ITLBCFG or DTLBCFG fields and indicate the size of 
pages currently contained within that way. Each row, then, contains the format for the 

31 0

Probe Address

32

31 12 11 4 3 2 0

VPN Undefined Hit Way

20 8 1 3

31 12 11 5 4 3 0

VPN Undefined Hit Way

20 7 1 4
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way and condition indicated in the left column. Note that invalidating Way-5 and Way-6 
when the IVARWAY56 and DVARWAY56 parameters are "Fixed" causes no changes be-
cause those ways are constant.

Invalidation of ITLB ways 7-15 or DTLB ways 10-15 is undefined.

The format of the as register used for the IITLB and IDTLB instructions is shown in 
Figure 4–41. The low order four bits contain the way to be accessed. The upper bits 
contain at least the Index from the Virtual Page Number (VPN). Note that unused bits at 
Bit 12 and above are ignored so that those bits may simply contain the address for ac-
cess to all ways of both TLBs. Unused bits at Bit 11 and below are reserved for forward 
compatibility. They may either be zero or they may be the result of the probe instruction 
(Section 4.6.5.7 on page 171).

Invalidation of an entry sets the corresponding ASID to zero so that it no longer re-
sponds when an address is looked up in the TLB.

Figure 4–41.  MMU Option Addressing (as) Format for IxTLB

Way 31 30 29 28 27 26 25 24 23 22 21 20 19 15 14 13 12 11 4 3 2 1 0

0-3 (16entry) Ignored Index Reserved 4’h0,1,2,3

0-3 (32entry) Ignored Index Reserved 4’h0,1,2,3

4 (1MB) Ignored Index Ignored Reserved 4’h4

4 (4MB) Ignored Index Ignored Reserved 4’h4

4 (16MB) Ignored Index Ignored Reserved 4’h4

4 (64MB) Ignored Index Ignored Reserved 4’h4

5 (Fixed) Ignored Reserved 4’h5

5 (128MB) Ignored Index Ignored Reserved 4’h5

5 (256MB) Ig Index Ignored Reserved 4’h5

6 (Fixed) Ignored Reserved 4’h6

6 (512MB) Index Ignored Reserved 4’h6

6 (256MB) Ig Index Ignored Reserved 4’h6

7-9(DTLB) Ignored Reserved 4’h7,8,9

31 30 29 28 27 26 25 24 23 22 21 20 19 15 14 13 12 11 4 3 2 1 0
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After modifying any TLB entry with a IITLB instruction, an ISYNC must be executed be-
fore executing any instruction that depends on the modification. After modifying any TLB 
entries with an IDTLB instruction, the operation of loads from and stores that depend on 
that TLB entry are undefined until a DSYNC instruction is executed.

4.6.5.9  MMU Option Auto-Refill TLB Ways and PTE Format

When no TLB entry matches the ASIDs and the virtual address presented to the MMU, 
the MMU attempts to automatically load the appropriate page table entry (PTE) from the 
page table and write it into the TLB in one of the AutoRefill ways. This hardware- gener-
ated load from the page table itself requires virtual-to-physical address translation, 
which executes at Ring 0 so that it has access to the page table and uses the DTLB. An 
error of any sort during the automatic refill process will cause an InstTLBMissCause 
or a LoadStoreTLBMissCause exception to be raised so that system software can 
take appropriate action and possibly retry the access. This combination of hardware and 
software refill gives excellent performance while minimizing processor complexity. If the 
second translation succeeds, the PTE load is done through the DataCache, if one is 
configured, and the attributes for the page containing the PTE enable such a cache ac-
cess. The PTE’s Ring field is then used as an index into the RASID register, and the re-
sulting ASID is written together with the rest of the PTE into the TLB.

Xtensa’s TLB refill mechanism requires the page table for the current address space to 
reside in the current virtual address space. The PTEBase field of the PTEVADDR register 
gives the base address of the page table. On a TLB miss, the processor forms the virtual 
address of the PTE by catenating the PTEBase portion of PTEVADDR, the Virtual Page 
Number (VPN) bits of the miss virtual address, and 2 zero bits. The bits used from 
PTEVADDR and from the virtual address are configuration dependent; the exact calcula-
tion for 4-byte PTEs is

PTEVADDR31..22||vAddr31..12||2'b00

The format of the PTEs is shown in Figure 4–42. The most significant bits hold the Phys-
ical Page Number (PPN), the translation of the virtual address corresponding to this en-
try. The Sw bits are available for software use in the page table (they are not stored in 
the TLB). The Ring field specifies the privilege level required to access this page; this is 
used to choose one of the four ASIDs from RASID when the TLB is written. The attribute 
field gives the access attributes for this page (see Section 4.6.5.10).

Figure 4–42.  MMU Option Page Table Entry (PTE) Format 

31 12 11 6 5 4 3 0

PPN Sw Ring Attribute

20 6 2 4
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The configuration described in Section 4.6.5.4 (with IVARWAY56/DVARWAY56 Fixed) 
provides a maximum of 3328 MB of dynamically mapped space (4 GB of total virtual ad-
dress space with 768 MB of statically mapped space). The page table for this maximum 
size requires 851968 PTEs (3328MB/4 kB). The entire set of PTEs require 3328 kB of 
virtual address space (at 4 bytes per PTE). The PTEs themselves are at virtual address-
es and, therefore, 832 of the PTEs in the table are for mapping the page table itself. 
These PTEs for mapping the page table will fit onto a single page, the mapping for which 
may be written into one of the single-entry ways (Ways 7-9) of the data TLB for guaran-
teed access.

For example, if PTEVADDR is set to 32’hCFC00000, then the virtual address space be-
tween there and 32’hCFF3FFFF is used as the page table. That page table is mapped 
by the 832 entries between 32’hCFF3F000 and 32’hCFF3FCFF. The translation for the 
page at 32’hCFF3F000 is placed in one of the single-entry ways of the data TLB. (The 
accesses that might have used the remaining 192 PTE entries on that page would al-
ready have been translated by one of the constant ways.) Many of those 832 entries 
may be marked invalid and the physical address space required for the page table may 
be made very small.

In systems with large memories, the above maximum configuration may be improved in 
performance by mapping the entire page table into the constant way (Way 5). If 
PTEVADDR is set to 32’hD4000000, for example, the virtual address space between 
there and 32’hD433FFFF, which maps to the physical address space between 
32’h04000000 and 32’h0433FFFF (between 64 MB and about 68 MB) is used for a 
flat page table mapping all of memory. Any TLB miss will now be handled by the hard-
ware refill as the translation for the PTE will be handled by the constant way. The disad-
vantage is that over 3 MB of memory must be allocated to the page table.

In a small system, where all processes are limited to the first 8 MB of virtual space, 
PTEVADDR might be set to 32’hCFC00000 and two of the single entry ways set to map 
the page at 32’hCFC00000 and the page at 32’hCFC01000. One or both pages of 
PTEs could be used for translations and the hardware refill would always succeed for le-
gal addresses.

4.6.5.10  MMU Option Memory Attributes

Currently available hardware supports the memory attributes described in this section. 
T1050 hardware supported somewhat different memory attributes, which are described 
in Section A.5 “MMU Option Memory Attributes”. System software may use the subset of 
attributes (1, 3, 5, 7, 12, 13, and 14) which have not changed to support all Xtensa pro-
cessors.
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The memory attributes discussed in this section apply both to attribute values written in 
and read from the TLBs (see Section 4.6.5.5 and Section 4.6.5.6) and to attribute values 
stored in the PTE entries and written into the AutoRefill ways of the TLBs (see 
Section 4.6.5.9).

For a more detailed description of the memory access process and the place of these at-
tributes in it, see Section 4.6.2.

Table 4–109 shows the meanings of the attributes for instruction fetch, data load, and 
data store. For a more detailed description of the memory access process and the place 
of these attributes in it, see Section 4.6.2. 

The first column in Table 4–109 indicates the attribute from the TLB while the remaining 
columns indicate various effects on the access. The columns are described in the follow-
ing bullets:

Attr — the value of the 4-bit Attribute field of the TLB entry.
Rights — whether the TLB entry may successfully translate a data load, a data 
store, or an instruction fetch. 
- The first character is an r if the entry is valid for a data load and a dash ("-")if 

not. 
- The second character is a w if the entry is valid for a data store and a dash  

("-")if not. 
- The third character is an x if the entry is valid for an instruction fetch and a dash 

("-")if not. 
If the translation is not successful, an exception is raised.
Local memory accesses (including XLMI) consult only the Rights column.
WB — some rows are split by whether or not the configured cache is writeback or 
not. Rows without an entry apply to both cache types.
Meaning for Cache Access — the verbal description of the type of access made to 
the cache.
Access Cache — indicates whether the cache provides the data.
- The first character is an h if the cache provides the data when the tag indicates 

hit and a dash ("-")if it does not. 
- The second character is an m if the cache provides the data when the tag indi-

cates a miss and a dash ("-")if it does not. This capability is used only for Iso-
late mode.
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Fill Cache — indicates whether an allocate and fill is done to the cache if the tag in-
dicates a miss.
- The first character is an r if the cache is filled on a data load and a dash ("-")if 

it is not. 
- The second character is a w if the cache is filled on a data store and a dash ("-

")if it is not. 
- The third character is an x if the cache is filled on an instruction fetch and a 

dash ("-")if it is not.
Guard Load — refers to the guarded attribute as described in Table 4–99 on 
page 144. Stores are always guarded  and instruction fetches are never guarded,  
but loads are guarded where there is a “yes” in this column. Local memory loads are 
not guarded.
Write Thru — indicates whether a write is done through the PIF interface.
- The first character is an h if a Write Thru occurs when the tag indicates hit and a 

dash ("-")if it does not. 
- The second character is an m if a Write Thru occurs when the tag indicates a 

miss and a dash ("-")if it does not.

Writes to local memories are never Write-Thru. In most implementations, a write-thru will 
only occur after any needed cache fill is complete.
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In the absence of the Instruction Cache Option, Cached regions behave as Bypass re-
gions on instruction fetch. In the absence of the Data Cache Option, Cached regions be-
have as Bypass regions on data load or store. If the Data Cache is not configured as 
writeback (Section 4.5.5.1 on page 119) Attributes 4, 5, 6, and 7 behave as Attributes 8, 
9, 10, and 11 respectively instead of as they are listed in Table 4–109.

4.6.5.11  MMU Option Operation Semantics

The following functions are used in the operation sections of the individual instruction 
definitions: 

function ltranslate(vAddr, ring)
ltranslate ← (pAddr, attributes, cause)

endfunction ltranslate

function ASID(ring)
ASID ← RASIDring*8+ASIDBits-1..ring*8

endfunction ASID

Table 4–109.  MMU Option Attribute Field Values

Attr Rights Meaning for Cache Access Access 
Cache

Fill 
Cache

Guard 
Load

Write 
Thru

0 r-- Bypass cache -- --- yes --

1 r-x Bypass cache -- --- yes --

2 rw- Bypass cache -- --- yes hm

3 rwx Bypass cache -- --- yes hm

4 r-- Cached, WrtBack alloc h- r-- - --

5 r-x Cached, WrtBack alloc h- r-x - --

6 rw- Cached, WrtBack alloc h- rw- - --

7 rwx Cached, WrtBack alloc h- rwx - --

8 r-- Cached, WrtThru h- r-- - --

9 r-x Cached, WrtThru h- r-x - --

10 rw- Cached, WrtThru h- r-- - hm

11 rwx Cached, WrtThru h- r-x - hm

12 --- illegal1 -- --- - --

13 rw- Cache Isolated2 hm --- - --

14 --- illegal1 -- --- - --

15 --- Reserved1 — — — —
1 Raises exception. EXCCAUSE is set to InstFetchProhibitedCause, LoadProhibitedCause, or StoreProhibitedCause depending on access type
2 For test only, implementation dependent, uses data cache like local memories and ignores tag.
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function InstPageBits(wi)
sizecodebits ← ceil(log2(InstTLB[wi].PageSizeCount))
sizecode ← IPAGESIZEwi*4+sizecodebits-1..wi*4
InstPageBits ← InstTLB[wi].PageBits[sizecode]

endfunction InstPageBits

function SplitInstTLBEntrySpec(spec)
wih ← ceil(log2(InstTLBWayCount)) − 1
wi ← specwih..0
eil ← InstPageBits(wi)
eih ← eil + log2(InstTLB[wi].IndexCount)
ei ← speceih..eil
vpn ← specInstTLBVAddrBits-1..eih+1
SplitInstTLBEntrySpec ← (vpn, ei, wi)

endfunction SplitInstTLBEntrySpec

function ProbeInstTLB (vAddr)
match ← 0
vpn ← undefined
ei ← undefined
wi ← undefined
for i in 0..InstTLBWayCount-1 do

if then
match ← match + 1
vpn ← x
ei ← x
wi ← i

endif
endfor
ProbeInstTLB ← (match, vpn, ei, wi)

endfunction ProbeInstTLB

4.7 Options for Other Purposes

This section contains options that do not fit easily into the previous sections. The Win-
dowed Register Option provides the hardware for a memory efficient ABI. The Proces-
sor Interface Option provides a standard interface to system memory. The Miscella-
neous Special Registers Option provides additional scratch registers. The Processor ID 
Option provides the ability for software to determine on which processor it is running. 
The Debug Option provides hardware to assist in debugging processors.
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4.7.1 Windowed Register Option

The Windowed Register Option replaces the simple 16-entry AR register file with a larg-
er register file from which a window of 16 entries is visible at any given time. The window 
is rotated on subroutine entry and exit, automatically saving and restoring some regis-
ters. When the window is rotated far enough to require registers to be saved to or re-
stored from the program stack, an exception is raised to move some of the register val-
ues between the register file and the program stack. The option reduces code size and 
increases performance of programs by eliminating register saves and restores at proce-
dure entry and exit, and by reducing argument-shuffling at calls. It allows more local 
variables to live permanently in registers, reducing the need for stack-frame mainte-
nance in non-leaf routines.

Xtensa ISA register windows are different from register windows in other instruction 
sets. Xtensa register increments are 4, 8, and 12 on a per-call basis, not a fixed incre-
ment as in other instruction sets. Also, Xtensa processors have no global address regis-
ters. The caller specifies the increment amount, while the callee performs the actual in-
crement by the ENTRY instruction. The compiler uses an increment sufficient to hide the 
registers that are live at the point of the call (which the compiler can pack into the fewest 
possible at the low end of the register-number space). The number of physical registers 
is 32 or 64, which makes this a more economical configuration. Sixteen registers are vis-
ible at one time. Assuming that the average number of live registers at the point of call is 
6.5 (return address, stack pointer, and 4.5 local variables), and that the last routine uses 
12 registers at its peak, this allows nine call levels to live in 64 registers (8×6.5+12=64). 
As an example, an average of 6.5 live registers might represent 50% of the calls using 
an increment of 4, 38% using an increment of 8, and 12% using an increment of 12. 

Prerequisites: Exception Option (page 82)
Incompatible options: None

The rotation of the 16-entry visible window within the larger register file is controlled by 
the WindowBase Special Register added by the option. The rotation always occurs in 
units of four registers, causing the number of bits in WindowBase to be log2(NAREG/4). 
Rotation at the time of a call can instantly save some registers and provide new regis-
ters for the called routine. Each saved register has a reserved location on the stack, to 
which it may be saved if the call stack extends enough farther to need to re-use the 
physical registers. The WindowStart Special Register, which is also added by the option 
and consists of NAREG/4 bits, indicates which four register units are currently cached in 
the physical register file instead of residing in their stack locations. An attempt to use 
registers live with values from a parent routine raises an Overflow Exception which 
saves those values and frees the registers for use. A return to a calling routine whose 
registers have been previously saved to the stack raises an Underflow Exception which 
restores those values. Programs without wide swings in the depth of the call stack save 
and restore values only occasionally.
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4.7.1.1  Windowed Register Option Architectural Additions

Table 4–110 through Table 4–113 show this option’s architectural additions. 

Table 4–110.  Windowed Register Option Constant Additions (Exception Causes) 
Exception Cause Description Constant Value

AllocaCause
MOVSP instruction, if the caller’s registers are not 
present in the register file 
(seeTable 4–64 on page 89)

6'b000101 (decimal 5)

Table 4–111.  Windowed Register Option Processor-Configuration Additions 
Parameter Description Valid Values

WindowOverflow4
Window overflow exception vector for 4-register 
stack frame

32-bit address1

WindowUnderflow4
Window underflow exception vector for 4-register 
stack frame

32-bit address1

WindowOverflow8
Window overflow exception vector for 8-register 
stack frame

32-bit address1

WindowUnderflow8
Window underflow exception vector for 8-register 
stack frame

32-bit address1

WindowOverflow12
Window overflow exception vector for 12- register 
stack frame

32-bit address1

WindowUnderflow12
Window underflow exception vector for 12- 
register stack frame

32-bit address1

NAREG Number of address registers 32 or 64
1. Some implementations have restrictions on the alignment and relative location of the WindowOverflowN and WindowUnderflowN vectors. See 

“procedure WindowCheck (wr, ws, wt)” in Section 4.7.1.3 “Window Overflow Check” on page 184 for how these are used.

Table 4–112.  Windowed Register Option Processor-State Additions and Changes 

Register 
Mnemonic Quantity Width 

(bits) Register Name R/W
Special 
Register 
Number1

AR
NAREG 32 Address registers 

(general registers)
R/W —

WindowBase
1 log2(

NAREG/4)
Base of current address-register 
window

R/W 72

WindowStart 1 NAREG/4 Call-window start bits R/W 73
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 5–127 on 

page 205.
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PS.CALLINC

1 2 Miscellaneous processor state,
window increment from call
(see Table 4–63 on page 87)

R/W 230

PS.OWB

1 4 Miscellaneous processor state,
old window base
(see Table 4–63 on page 87)

R/W 230

PS.WOE
1 1 Miscellaneous processor state,

window overflow enable
(see Table 4–63 on page 87)

R/W 230

Table 4–113.  Windowed Register Option Instruction Additions 
Instruction1 Format Definition
MOVSP RRR Atomic check window and move
CALL4,  
CALL8,  
CALL12

CALL Call subroutine, PC-relative. These instructions communicate the number of registers to 
hide using PS.CALLINC in addition to the operation of CALL0.

CALLX4, 
CALLX8, 
CALLX12

CALLX Call subroutine, address in register. These instructions communicate the number of 
registers to hide using PS.CALLINC in addition to the operation of CALLX0.

ENTRY
BRI12 Subroutine entry—rotate registers, adjust stack pointer. This instruction should not be 

used in a routine called by CALL0 or CALLX0.

RETW
CALLX Subroutine return—unrotate registers, jump to return address. Used to return from a 

routine called by CALL4, CALL8, CALL12, CALLX4, CALLX8, or CALLX12.
RETW.N2 RRRN Same at RETW in a 16-bit encoding

ROTW
RRR Rotate window by a constant. ROTW is intended for use in exception handlers and 

context switch.
L32E RRI4 Load 32 bits for window exception
S32E RRI4 Store 32 bits for window exception
RFWO RRR Return from window overflow exception
RFWU RRR Return from window underflow exception
1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
2. Exists only if the Code Density Option described in Section 4.3.1 on page 53 is configured.

Table 4–112.  Windowed Register Option Processor-State Additions and Changes 

Register 
Mnemonic Quantity Width 

(bits) Register Name R/W
Special 
Register 
Number1

1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 5–127 on 
page 205.
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4.7.1.2  Managing Physical Registers

The WindowBase Special Register gives the position of the current window into the 
physical register file. In the instruction descriptions, AR[i] is a short-hand for a refer-
ence to the physical register file AddressRegister defined as follows: 

AddressRegister[((2'b00||i3..2) + WindowBase) || i1..0]

The WindowStart Special Register gives the state of physical registers (unused or part 
of a window). WindowStart is used both to detect overflow and underflow on register 
use and procedure return, as well as to determine the number of registers to be saved in 
a given stack frame when handling exceptions and switching contexts. There is one bit 
in WindowStart for each four physical registers. This bit is set if those four registers 
are AR[0] to AR[3] for some call. WindowStart bits are set by ENTRY and cleared by 
RETW.

The WindowBase and WindowStart registers are undefined after processor reset, and 
should be initialized by the reset exception vector code.

Figure 4–43 through Figure 4–45 show three functionally identical implementations of 
windowed registers. Figure 4–43 shows the concept of how the registers are addressed. 
Figure 4–44 shows logic with the same functional result but with little or no penalty paid 
in timing for the addition of the WindowBase value. Figure 4–45 shows a third version of 
the logic with the same functional result but with no timing loss at all caused by the addi-
tion of the WindowBase value.

Figure 4–43.  Conceptual Register Window Read
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Figure 4–44.  Faster Register Window Read

Figure 4–45.  Fastest Register Window Read
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registers. Figure 4–46 shows the state of the register file just prior to a reference that 
causes an overflow. The WS(n) notation shows which WindowStart bits are set in this 
example, and gives the distance to the next bit set (that is, the number of registers 
stored for the corresponding stack frame). In the figure, “rmax” indicates the maximum 
register that the current procedure uses and “Base” is an abbreviation for WindowBase. 
Note that registers are considered in groups of four here.

Figure 4–46.  Register Window Near Overflow

The check for overflow is done as follows:

WindowCheck ( if ref(AR[r]) then r3..2 else 2'b00,
if ref(AR[s]) then s3..2 else 2'b00,
if ref(AR[t]) then t3..2 else 2'b00)

where ref() is 1 if the register is used by the instruction, and 0 otherwise, and 
WindowCheck is defined as follows:

procedure WindowCheck (wr, ws, wt)
n ← if (wr ≠ 2'b00 or ws ≠ 2'b00 or wt ≠ 2'b00)

and WindowStartWindowBase+1 then 2’b01
else if (wr1 or ws1 or wt1)

and WindowStartWindowBase+2 then 2’b10
else if (wr = 2'b11 or ws = 2'b11 or wt = 2'b11)

and WindowStartWindowBase+3 then 2’b11
else 2’b00

if CWOE = 1 and n ≠ 2’b00 then
PS.OWB ← WindowBase
m ← WindowBase + (2'b00||n)
PS.EXCM ← 1
EPC[1] ← PC
nextPC ← if WindowStartm+1 then WindowOverflow4

else if WindowStartm+2 then WindowOverflow8
else WindowOverflow12
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WindowBase ← m
endif

endprocedure WindowCheck

A single instruction may raise multiple window overflow exceptions. For example, sup-
pose that registers 4..7 of the current window still contain a previous call frame’s val-
ues (WindowStartWindowBase+1 is set), and 8..15 are part of the subroutine called by 
that frame (WindowStartWindowBase+2 is also set), and an instruction references regis-
ter 10. The processor will raise an exception to spill registers 4..7 and then return to 
retry the instruction, which will then raise another exception to spill registers 8..15. On 
return from this overflow handler, the reference will finally succeed. 

4.7.1.4  Call, Entry, and Return Mechanism

The register window mechanics of the {CALL, CALLX}{4,8,12}, ENTRY, and {RETW, 
RETW.N} instructions are:

CALLn/CALLXn
WindowCheck (2'b00, 2'b00, n)
PS.CALLINC ← n
AR[n||2'b00] ← n || (PC + 3)29..0

ENTRY s, imm12
AR[PS.CALLINC||s1..0] ← AR[s] − (017||imm12||03)
WindowBase ← WindowBase + (02||PS.CALLINC)
WindowStartWindowBase ← 1

In the definition of ENTRY above, the AR read and the AR write refer to different registers.

RETW/RETW.N
n ← AR[0]31..30
nextPC ← PC31..30 || AR[0]29..0
owb ← WindowBase
m ← if WindowStartWindowBase-4’b0001 then 2’b01
 elsif WindowStartWindowBase-4’b0010 then 2’b10
 elsif WindowStartWindowBase-4’b0011 then 2’b11
 else 2’b00
if n = 2’b00 | (m ≠ 2’b00 & m ≠ n) | PS.WOE=0 | PS.EXCM=1 then

-- undefined operation
-- may raise illegal instruction exception

else
WindowBase ← WindowBase − (02||n)
if WindowStartWindowBase ≠ 0 then

WindowStartowb ← 0
else

-- Underflow exception
PS.EXCM ← 1
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EPC[1] ← PC
PS.OWB ← owb
nextPC ← if n = 2'b01 then WindowUnderflow4

else if n = 2'b10 then WindowUnderflow8
else WindowUnderflow12

endif
endif

The RETW opcode assignment is such that the s and t fields are both zero, so that the 
hardware may use either AR[s] or AR[t] in place of AR[0] above. Underflow is de-
tected by the caller’s window’s WindowStart bit being clear (that is, not valid). 
Figure 4–47 shows the register file just before a RETW that raises an underflow excep-
tion. window overflow and window underflow exceptions leave PS.UM unchanged. 

Figure 4–47.  Register Window Just Before Underflow

4.7.1.5  Windowed Procedure-Call Protocol

While the procedure-call protocol is a matter for the compiler and ABI, the Xtensa ISA, 
and particularly the Windowed Register Option was designed with the following goals in 
mind:

Provide highly efficient call/return (measured in both code size and execution time)
Support per-call register window increments
Use a single stack for both register save/restore and local variables
Support variable frame sizes (for example, alloca)
Support programming language exception handling (for example, 
setjmp/longjmp, catch/throw, and so forth)
Support debuggers
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Require minimal special ISA features (special registers and so forth)

Table 4–114 shows the register usage in the Windowed Register Option. Refer to 
Section 8.1 “The Windowed Register and CALL0 ABIs” for a more complete description 
of the Windowed Register ABI.

Calls to routines that use only a2..a3 as parameters may use the CALL4, CALL8, or 
CALL12 instructions to save 4, 8, or 12 live registers. Calls to routines that use a2..a7 
for parameters may use only CALL4 or CALL8. The following assembly language illus-
trates the call protocol. 

// In procedure g, the call
// z = f(x, y)
// would compile into

mov a6, x // a6 is f’s a2 (x)
mov a7, y // a7 is f’s a3 (y)
call4 f // put return address in f’s a0,

// goto f
mov z, a6 // a6 is f’s a2 (return value)

// The function
// int f(int a, int *b) { return a + *b; }
// would compile into
f: entry sp, framesize// allocate stack frame, rotate regs

// on entry, a0/ return address, a1/ stack pointer,
// a2/ a, a3/ *b
l32i a3, a3, 0 // *b
add a2, a2, a3// *b + a
retw

The “highly efficient call/return” goal requires that there not be separate stack and frame 
pointer registers in cases where they would differ by a constant (that is, no alloca is 
used). There are simply not enough registers to waste. For routines that do call alloca, 
the compiler will copy the initial stack pointer to another register and use that for ad-
dressing all locals.  

The variable allocation, 

p1 = alloca(n1);

will be implemented as

Table 4–114.  Windowed Register Usage 
Callee Register Register Name Usage

0 a0 Return address
1 a1/sp Stack pointer 

2..7 a2..a7 In, out, inout, and return values
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movi t4, -16 // for alignment to 16-byte boundary
sub t5, sp, n1 // reserve stack space
and t4, t5, t4 // ...
movsp sp, t4 // atomically set sp
addi p1, sp, -16+botsize// save pointer

The botsize in the last statement allows the compiler to maintain a block of words at 
the bottom of the stack (for example, this block might be for memory arguments to rou-
tines). The -16 is a constant of the call protocol; it puts 16 bytes of the bottom area be-
low the stack pointer (since they are infrequently referenced), leaving the limited range 
of the ISA’s load/store offsets available for more frequently referenced locals. 

Figure 4–48 and Figure 4–49 show the stack frame before and after alloca.

Figure 4–48.  Stack Frame Before alloca()
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Figure 4–49.  Stack Frame After First alloca()

Figure 4–50 shows the stacking of frames when the stack grows downward, as on most 
other systems. The window save area for a frame is addressed with negative offsets 
from the next stack frame’s sp. Four registers are saved in the base save area. If more 
than four registers are saved, they are stored at the top of the stack frame, in the extra 
save area, which can be found with negative offsets from the previous stack frame’s sp. 
This unusual split allows for simple backtrace while providing for a variable sized save 
area. 
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Figure 4–50.  Stack Frame Layout

Several of the goals listed on page 187 require that call stacks be backward-traceable. 
That is, from the state of call[i], it must be possible to determine the state of 
call[i-1]. It is best if the state of call[i] can be summarized in a single pointer (at 
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scribed as: There must be a means of determining the pointer for call[i-1] from the 
pointer of call[i]. For managing register-window overflow or underflow, this method 
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call[i-1] at a fixed offset from the stack pointer (not the frame pointer) for call[i]. 
Thus, the stack pointer for call[i-1] is stored in the area labeled “base save area i-1” 
in Figure 4–48.

For efficiency, the call[i-1] stack pointer is only stored into call[i]’s frame when 
call[i-1]’s registers are stored into the stack on overflow. This is sufficient for regis-
ter window underflow handling. Other back-tracing operations should begin by storing 
registers of all call frames back into the stack.

Because the call[i-1] stack pointer is referenced infrequently, it is stored at a nega-
tive offset from the stack pointer. This leaves the ISA’s limited positive offsets available 
for more frequent uses. Thus, the stack always reaches to 16 bytes below the contents 
of the stack pointer. Interrupts and such must respect this 16-byte reserved space below 
the stack pointer. Because the minimum number of registers to save is four, the proces-
sor stores four of call[i-1]’s registers, a0..a3, in this space; the rest (if any) are 
saved in call[i-1]’s own frame.

The register-window call instructions only store the least-significant 30 bits of the return 
address. Register-window return instructions leave the two most-significant bits of the 
PC unchanged. Therefore, subroutines called using register window instructions must 
be placed in the same 1 GB address region as the call.

4.7.1.6  Window Overflow and Underflow to and from the Program Stack

Register-window underflow occurs when a return instruction decrements to a window 
that has been spilled (indicated by its WindowStart bit being cleared). The processor 
saves the current PC in EPC[1] and transfers to one of three underflow handlers based 
on the register window decrement. When the MMU Option is configured, it is necessary 
for the handlers to access the stack with the same privilege level as the code that raised 
the exception. Two special instructions, L32E and S32E, are therefore added by the 
Windowed Register Option for this purpose. In addition, these instructions use negative 
offsets in the formation of the virtual address, which saves several instructions in the 
handlers. The exception handlers could be as simple as the following:

WindowOverflow4: // inside call[i] referencing a register that
// contains data from call[j]

// On entry here: window rotated to call[j] start point; the
// registers to be saved are a0-a3; a4-a15 must be preserved
// a5 is call[j+1]’s stack pointer
s32e  a0, a5, -16 // save a0 to call[j+1]’s frame
s32e  a1, a5, -12 // save a1 to call[j+1]’s frame
s32e  a2, a5,  -8 // save a2 to call[j+1]’s frame
s32e  a3, a5,  -4 // save a3 to call[j+1]’s frame
rfwo // rotates back to call[i] position

WindowUnderflow4: // returning from call[i+1] to call[i] where
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// call[i]’s registers must be reloaded
// On entry here: a0-a3 are to be reloaded with 
// call[i].reg[0..3] but initially contain garbage.
// a4-a15 are call[i+1].reg[0..11],
// (in particular, a5 is call[i+1]’s stack pointer)
// and must be preserved
l32e  a0, a5, -16 // restore a0 from call[i+1]’s frame
l32e  a1, a5, -12 // restore a1 from call[i+1]’s frame
l32e  a2, a5,  -8 // restore a2 from call[i+1]’s frame
l32e  a3, a5,  -4 // restore a3 from call[i+1]’s frame
rfwu

WindowOverflow8:
// On entry here: window rotated to call[j]; the registers to be
// saved are a0-a7; a8-a15 must be preserved
// a9 is call[j+1]’s stack pointer
s32e  a0, a9, -16 // save a0 to call[j+1]’s frame
l32e  a0, a1, -12 // a0 <- call[j-1]’s sp
s32e  a1, a9, -12 // save a1 to call[j+1]’s frame
s32e  a2, a9,  -8 // save a2 to call[j+1]’s frame
s32e  a3, a9,  -4 // save a3 to call[j+1]’s frame
s32e  a4, a0, -32 // save a4 to call[j]’s frame
s32e  a5, a0, -28 // save a5 to call[j]’s frame
s32e  a6, a0, -24 // save a6 to call[j]’s frame
s32e  a7, a0, -20 // save a7 to call[j]’s frame
rfwo // rotates back to call[i] position

WindowUnderflow8:
// On entry here: a0-a7 are call[i].reg[0..7] and initially
// contain garbage, a8-a15 are call[i+1].reg[0..7],
// (in particular, a9 is call[i+1]’s stack pointer)
// and must be preserved
l32e  a0, a9, -16 // restore a0 from call[i+1]’s frame
l32e  a1, a9, -12 // restore a1 from call[i+1]’s frame
l32e  a2, a9,  -8 // restore a2 from call[i+1]’s frame
l32e  a7, a1, -12 // a7 <- call[i-1]’s sp
l32e  a3, a9,  -4 // restore a3 from call[i+1]’s frame
l32e  a4, a7, -32 // restore a4 from call[i]’s frame
l32e  a5, a7, -28 // restore a5 from call[i]’s frame
l32e  a6, a7, -24 // restore a6 from call[i]’s frame
l32e  a7, a7, -20 // restore a7 from call[i]’s frame
rfwu

WindowOverflow12:
// On entry here: window rotated to call[j]; the registers to be
// saved are a0-a11; a12-a15 must be preserved
// a13 is call[j+1]’s stack pointer
s32e   a0, a13, -16  // save a0 to call[j+1]’s frame
l32e   a0,  a1, -12  // a0 <- call[j-1]’s sp
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s32e   a1, a13, -12  // save a1 to call[j+1]’s frame
s32e   a2, a13,  -8  // save a2 to call[j+1]’s frame
s32e   a3, a13,  -4  // save a3 to call[j+1]’s frame
s32e   a4,  a0, -48  // save a4 to end of call[j]’s frame
s32e   a5,  a0, -44  // save a5 to end of call[j]’s frame
s32e   a6,  a0, -40  // save a6 to end of call[j]’s frame
s32e   a7,  a0, -36  // save a7 to end of call[j]’s frame
s32e   a8,  a0, -32  // save a8 to end of call[j]’s frame
s32e   a9,  a0, -28  // save a9 to end of call[j]’s frame
s32e  a10,  a0, -24  // save a10 to end of call[j]’s frame
s32e  a11,  a0, -20  // save a11 to end of call[j]’s frame
rfwo  // rotates back to call[i] position

WindowUnderflow12:
// On entry here: a0-a11 are call[i].reg[0..11] and initially
// contain garbage, a12-a15 are call[i+1].reg[0..3],
// (in particular, a13 is call[i+1]’s stack pointer)
// and must be preserved
l32e   a0,  a13, -16 // restore a0 from call[i+1]’s frame
l32e   a1,  a13, -12 // restore a1 from call[i+1]’s frame
l32e   a2,  a13,  -8 // restore a2 from call[i+1]’s frame
l32e   a11,  a1, -12 // a11 <- call[i-1]’s sp
l32e   a3,  a13,  -4 // restore a3 from call[i+1]’s frame
l32e   a4,  a11, -48 // restore  a4 from end of call[i]’s frame
l32e   a5,  a11, -44 // restore  a5 from end of call[i]’s frame
l32e   a6,  a11, -40 // restore  a6 from end of call[i]’s frame
l32e   a7,  a11, -36 // restore  a7 from end of call[i]’s frame
l32e   a8,  a11, -32 // restore  a8 from end of call[i]’s frame
l32e   a9,  a11, -28 // restore  a9 from end of call[i]’s frame
l32e  a10,  a11, -24 // restore a10 from end of call[i]’s frame
l32e  a11,  a11, -20 // restore a11 from end of call[i]’s frame
rfwu

4.7.2 Processor Interface Option

The Processor Interface Option adds a bus interface used by memory accesses, which 
are to locations other than local memories (page 123 through page 126). It is used for 
cache misses for cacheable addresses (page 111 through page 122), as well as for 
cache bypass memory accesses.

Direct memory access to local memories from outside may also be configured through 
the bus interface added by the Processor Interface Option. The direct memory access 
may either be top priority for highest bandwidth or intermediate priority for greatest effi-
ciency. 

Prerequisites: None
Incompatible options: None
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Historical note: The additions made by this option were once considered part of the 
Core Architecture and so compatibility with previous hardware might require the use 
of this option.

Refer to a specific Xtensa processor data book for more detail on the Processor Inter-
face Option.

4.7.2.1  Processor Interface Option Architectural Additions

Table 4–115 shows this option’s architectural additions (seeTable 4–64 on page 89 for 
more). Note that asynchronous load/store errors are delivered via a configuration-de-
pendent interrupt.

4.7.3 Miscellaneous Special Registers Option

The Miscellaneous Special Registers Option provides zero to four scratch registers with-
in the processor readable and writable by RSR, WSR, and XSR. These registers are privi-
leged. They may be useful for some application-specific exception and interrupt pro-
cessing tasks in the kernel. The MISC registers are undefined after reset.

Prerequisites: None
Incompatible options: None

4.7.3.1  Miscellaneous Special Registers Option Architectural Additions

Table 4–116 and Table 4–117 show this option’s architectural additions.

Table 4–115.  Processor Interface Option Constant Additions (Exception Causes) 
Exception Cause Description Constant Value
InstrPIFDataErrorCause PIF data error during instruction fetch 6'b001100 (decimal 12)

LoadStorePIFDataErrorCause
Synchronous PIF data error during 
LoadStore access

6'b001101 (decimal 13)

InstrPIFAddrErrorCause PIF address error during instruction fetch 6'b001110 (decimal 14)

LoadStorePIFAddrErrorCause
Synchronous PIF address error during 
LoadStore access

6'b001111 (decimal 15)

Table 4–116.  Miscellaneous Special Registers Option Processor-Configuration 
Additions 
Parameter Description Valid Values

NMISC
Number of miscellaneous 32-bit 
Special Registers

0..4
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4.7.4 Thread Pointer Option

The Thread Pointer Option provides an additional register to facilitate implementation of 
Thread Local Storage by operating systems and tools. The register is readable and writ-
able by RUR and WUR. The register is unprivileged and is undefined after reset.

Prerequisites: None
Incompatible options: None

4.7.4.1  Thread Pointer Option Architectural Additions

Table 4–118 shows this option’s architectural additions.

4.7.5 Processor ID Option

In some applications there are multiple Xtensa processors executing from the same in-
struction memory, and there is a need to distinguish one processor from another. This 
option allows the system logic to provide each processor an identity by reading the PRID 
register. The PRID value for each processor is typically in the range 
0..NPROCESSORS-1, but this is not required. The PRID register is constant after reset.

Prerequisites: None
Incompatible options: None

4.7.5.1  Processor ID Option Architectural Additions

Table 4–119 shows this option’s architectural additions.

Table 4–117.  Miscellaneous Special Registers Option Processor-State Additions 

Register 
Mnemonic Quantity Width 

(bits) Register Name R/W
Special 
Register 
Number1

MISC NMISC 32 Miscellaneous privileged register R/W 244-247
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 5–127 on 

page 205.

Table 4–118.  Thread Pointer Option Processor-State Additions 
Register 
Mnemonic Quantity Width

(bits) Register Name R/W Register Number1

THREADPTR 1 32 Thread pointer R/W User 231
1. See Table 5–127 on page 205.
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4.7.6 Debug Option

The Debug Option implements instruction-counting and breakpoint exceptions for de-
bugging by software or external hardware. The option uses an interrupt level previously 
defined in the High-Priority Interrupt Option. In some implementations, some debug in-
terrupts may not be masked by PS.INTLEVEL (see the Tensilica On-Chip Debugging 
Guide). The Debug Option is useful when configuring a new (not previously debugged) 
Xtensa processor configuration or for running previously untested software on a proces-
sor. 

Prerequisites: High-Priority Interrupt Option (page 106) 
Incompatible options: None

Some of the features listed below are added only when the OCD Option (see the Tensil-
ica On-Chip Debugging Guide) is configured in addition to the Debug Option. Those fea-
tures are included here, under the Debug Option, so that their architectural aspects are 
documented, but marked as “available only with OCD Option.”

4.7.6.1  Debug Option Architectural Additions

Table 4–120 through Table 4–122 show this option’s architectural additions. 

Table 4–119.  Processor ID Option Special Register Additions 
Register 
Mnemonic Quantity Width

(bits) Register Name R/W Special Register 
Number1

PRID 1 322 Processor Id R 235
1. Registers with a Special Register assignment are read with the RSR instruction. See Table 5–127 on page 205.
2. Some implementations may support only the low 16 bits of the PRID register.

Table 4–120.  Debug Option Processor-Configuration Additions 
Parameter Description Valid Values
DEBUGLEVEL Debug interrupt level 2..NLEVEL1,2

NIBREAK Number of instruction breakpoints (break registers) 0..2
NDBREAK Number of data breakpoints (break registers) 0..2
SZICOUNT Number of bits in the ICOUNT register 2, 32
1. NLEVEL is specified in the High-Priority Interrupt Option, Table 4–74 on page 107.
2. DEBUGLEVEL must be greater than EXCMLEVEL (see Table 4–74 on page 107)
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4.7.6.2  Debug Cause Register

The DEBUGCAUSE register contains a coded value giving the reason(s) that the proces-
sor took the debug exception. It is implementation-specific whether all applicable bits 
are set or whether lower-priority conditions are undetected in the presence of higher-pri-
ority conditions. 

For the priority of the bits in the DEBUGCAUSE register, see Section 4.4.1.11.

Figure 4–51 below shows the bits in the DEBUGCAUSE register, and Table 4–123 de-
scribes more fully the meaning of each bit.

Table 4–121.  Debug Option Processor-State Additions 

Register 
Mnemonic Quantity Width 

(bits) Register Name R/W
Special 
Register 
Number1

ICOUNT 1 2,32 Instruction count R/W 236
ICOUNTLEVEL 1 4 Instruction-count level R/W 237
IBREAKA NIBREAK 32 Instruction-break address R/W 128-129
IBREAKENABLE 1 NIBREAK Instruction-break enable bits R/W 96
DBREAKA NDBREAK 32 Data-break address R/W 144-145
DBREAKC NDBREAK 82 Data break control R/W 160-161
DEBUGCAUSE 1 10 Cause of last debug exception R 233
DDR3 13 32 Debug data register R/W 104
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 5–127 on page 205.
2. See Figure 4–52 on page 202 for the DBREAKC register format.
3. The DDR register may have separate physical registers for in and out directions in some implementations. The register is only available with 

the OCD Option, for which the Debug Option is a prerequisite.

Table 4–122.  Debug Option Instruction Additions 
Instruction1 Format Definition
BREAK RRR Breakpoint
BREAK.N2 RRRN Narrow breakpoint
1. These instructions are fully described in Chapter 6,  "Instruction Descriptions" on page 243.
2. Exists only if the Code Density Option described in Section 4.3.1 on page 53 is configured.
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Figure 4–51.  DEBUGCAUSE Register

The DEBUGCAUSE register is undefined after processor reset and when CINTLEVEL < 
DEBUGLEVEL.

4.7.6.3  Using Breakpoints

BREAK and BREAK.N are 24-bit and 16-bit instructions that simply raise a DEBUGLEVEL 
exception with DEBUGCAUSE bit 3 or 4 set, respectively, when executed. Software can 
replace an instruction with a breakpoint instruction to transfer control to a debug monitor 
when execution reaches the replaced instruction. 

The BREAK and BREAK.N instructions cannot be used on ROM code, and so the ISA 
provides a configurable number of instruction-address breakpoint registers. When the 
processor is about to complete the execution of the instruction fetched from virtual ad-
dress IBREAKA[i], and IBREAKENABLEi is set, it raises an exception instead. It is up 
to the software to compare the PC to the various IBREAKA/IBREAKENABLE pairs to de-
termine which comparison caused the exception.

The processor also provides a configurable number of data-address breakpoint regis-
ters. Each breakpoint specifies a naturally aligned power of two-sized block of bytes be-
tween one byte and 64 bytes in the processor’s address space and whether the break 
should occur on a load or a store or both. The lowest address of the covered block of 
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Table 4–123.  DEBUGCAUSE Fields 
Bit Field Meaning
0 IC ICOUNT exception
1 IB IBREAK exception
2 DB DBREAK exception
3 BI BREAK instruction
4 BN BREAK.N instruction
5 DI Debug interrupt1

11-8 DBNUM Which of the DBREAK registers matched (added in RA-2004.1 release)
1. The debug interrupt is only available with the OCD Option.
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bytes is placed in one of the DBREAKA registers. The size of the covered block of bytes 
is placed in the low bits of the corresponding DBREAKC register while the upper two bits 
of the DBREAKC register contain an indication of which access types should raise the ex-
ception. The settings for each possible block size are shown in Table 4–124. The ‘x’ val-
ues under DBREAKA[i]5..0 allow any naturally aligned address to be specified for that 
size. The result of other combinations of DBREAKC and DBREAKA is not defined.

When any of the bytes accessed by a load or store matches any of the bytes of the block 
specified by one of the DBREAK[i] register pairs, the processor raises an exception in-
stead of executing the load or store. Specifically, “match” is defined as:

(if load then DBREAKC[i]30 else DBREAKC[i]31) and
(DBREAKA[i] >= (126||DBREAKC[i]5..0 and vAddr)) and
(DBREAKA[i] <= (126||DBREAKC[i]5..0 and (vAddr+sz-1)))

where sz is the number of bytes in the memory access. That is, both the first and last 
byte of the memory access are masked by (126||DBREAKC[i]5..0). This operation aligns 
both byte addresses to the DBREAK size indicated by DBREAKC[i]as in Table 4–124. If 
the first or last masked address or any address between them matches DBREAKA[i] 
then a match exists. Note that bits in DBREAKA[i]5..0 corresponding to clear bits in 
DBREAKC[i]5..0 should also be clear.

For the DBREAK exception, the DBNUM field of the DEBUGCAUSE register records, as a 
four bit encoded number, which of the possible DBREAK[i] registers raised the excep-
tion. If more than one DBREAK[i] matches, one of the ones that matched is recorded in 
DBNUM.

The processor clears IBREAKENABLE on processor reset; the IBREAKA, DBREAKA, and 
DBREAKC registers are undefined after reset.

Table 4–124.  DBREAK Fields 
Desired DBREAK Size DBREAKC[i]5..0 DBREAKA[i]5..0

1 Byte 6’b111111 6’bxxxxxx
2 Bytes 6’b111110 6’bxxxxx0
4 Bytes 6’b111100 6’bxxxx00
8 Bytes 6’b111000 6’bxxx000
16 Bytes 6’b110000 6’bxx0000
32 Bytes 6’b100000 6’bx00000
64 Bytes 6’b000000 6’b000000
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4.7.6.4  Debug Exceptions

Typically DEBUGLEVEL is set to NLEVEL (highest priority for maskable interrupts) to al-
low debugging of other exception handlers. DEBUGLEVEL may, in certain cases be set to 
a lower level than NLEVEL. 

The relation between the current interrupt level (CINTLEVEL, Table 4–63) and the spec-
ified debug interrupt level (DEBUGLEVEL, Table 4–120) determine whether debug inter-
rupts can be taken. All debug exceptions (ICOUNT, IBREAK, DBREAK, BREAK, BREAK.N) 
are disabled when CINTLEVEL ≥ DEBUGLEVEL. In this case, the BREAK and BREAK.N 
instructions perform no operation.

4.7.6.5  Instruction Counting

The ICOUNT register counts instruction completions when CINTLEVEL is less than 
ICOUNTLEVEL. Instructions that raise an exception (including the ICOUNT exception) do 
not increment ICOUNT. When ICOUNT would increment to 0, it instead generates an 
ICOUNT exception. (See "The checkIcount Procedure" on page 203 for the formal spec-
ification.) Because ICOUNT has priority ahead of other exceptions (see 
Section 4.4.1.11), it is taken even if another exception would have kept the instruction 
from completing and, therefore, ICOUNT from incrementing.

When ICOUNTLEVEL is 1, for example, ICOUNT stops counting when an interrupt or ex-
ception occurs and starts again at the return. Neither the instruction not executed nor 
the return increment ICOUNT, but the re-execution of the instruction does. By this 
mechanism, the count of instructions can be made the same whether or not the interrupt 
or exception is taken. When incrementing is turned on or off by RSIL, WSR.PS, or 
XSR.PS instructions, the state of CINTLEVEL and ICOUNTLEVEL before the instruction 
begins determines whether or not the increment is done, as well as whether or not the 
exception is raised.

Instruction counting may be used to implement single or multi-stepping. For repeatable 
programs, it can also be used to determine the instruction count of the point of failure, 
and allow the program to be re-run up to some point before the point of failure so that 
the failure can be directly observed with tracing or stepping.

The purpose of the ICOUNTLEVEL register is to allow various levels of exception and in-
terrupt processing to be visible or invisible for debugging. An ICOUNTLEVEL setting of 1 
causes single-stepping to ignore exceptions and interrupts, whereas setting it to 
DEBUGLEVEL allows the programmer to debug exception and interrupt handlers. The 
ICOUNTLEVEL register should only be modified while PS.INTLEVEL or PS.EXCM is 
high enough that both before and after the change, ICOUNT is not incrementing.
Xtensa Instruction Set Architecture (ISA) Reference Manual 201



Chapter 4. Architectural Options
This discussion applies for SZICOUNT=32. If SZICOUNT=2, then the upper bits appear 
as all ones for all purposes of reading with RSR and for comparing. In that case, 
WSR.ICOUNT affects only the lower two bits. The result is that the feature is really only 
useful for single stepping because it cannot count very far. But in other respects it be-
haves in the same fashion.

ICOUNTLEVEL is undefined after reset. The ICOUNT register should be read or written 
only when CINTLEVEL is greater than or equal to ICOUNTLEVEL, where the ICOUNT 
register is not incrementing (see Table 5–173).

4.7.6.6  Debug Registers

Like all special registers, the IBREAKA, IBREAKENABLE, DBREAKA, DBREAKC, and 
ICOUNT registers are read and written using the RSR, WSR, and XSR instructions. 
Figure 4–52 shows the format of the DBREAKC registers and Table 4–125 shows the 
DBREAKC[i] register fields.

Figure 4–52.  DBREAKC[i] Format

31 30 29 6 5 0

SB LB reserved MASK

1 1 6

Table 4–125.  DBREAKC[i] Register Fields 

Field Width 
(bits) Definition

MASK
6 Mask specifying which bits of vAddr to compare to DBREAKA[i]

See "Using Breakpoints" on page 199 for details.

LB
1 Load data address match enable

0 → no exception on load data address match 
1 → exception on load data address match

SB
1 Store data address match enable

0 → no exception on store data address match 
1 → exception on store data address match

reserved
Reserved for future use
Writing a non-zero value to one of these fields results in undefined processor 
behavior.
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4.7.6.7  Debug Interrupts

The debug data register (DDR) allows communication between a debug supervisor exe-
cuting on the processor and a debugger executing on a remote host. To stop an execut-
ing program being debugged, the external debugger may use a debug interrupt. Debug 
interrupts share the same vector as other debug exceptions 
(InterruptVector[DEBUGLEVEL]), but are distinguished by the setting of the DI bit of the 
DEBUGCAUSE register. Both the DDR register and the debug interrupt are only available 
with the OCD option (see the Tensilica On-Chip Debugging Guide).

The INTENABLE register (see Section 4.4.4) does not contain a bit for the debug inter-
rupt.

4.7.6.8  The checkIcount Procedure

The definition of checkIcount, used in Section 3.5.4.1 “Little-Endian Fetch Semantics” 
on page 29 and Section 3.5.4.2 “Big-Endian Fetch Semantics” on page 31, is:

procedure checkIcount ()
if CINTLEVEL < ICOUNTLEVEL then

if ICOUNT ≠ -1 then
ICOUNT ← ICOUNT + 1

elseif CINTLEVEL < DEBUGLEVEL then
-- Exception
DEBUGCAUSE ← 1
EPC[DEBUGLEVEL] ← PC
EPS[DEBUGLEVEL] ← PS
PC ← InterruptVector[DEBUGLEVEL]
PS.EXCM ← 1
PS.INTLEVEL ← DEBUGLEVEL

endif
endif

endprocedure checkIcount

4.7.7 Trace Port Option

The Trace Port Option provides outputs for tracing the processor’s activity without the 
affect on processor timing that would happen with software profiling. For more informa-
tion on this option, see the Xtensa Microprocessor Data Book. Because the Trace Port 
Option provides only additional outputs, it adds only the few architectural features listed 
below.

Prerequisites: None
Incompatible options: None
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4.7.7.1  Trace Port Option Architectural Additions

Table 4–119 shows this option’s architectural additions.

The MMID register is a write only location whose contents affect the output to the trace 
port and help in decoding the trace output by defining the which memory map is in force.

Table 4–126.  Trace Port Option Special Register Additions 
Register 
Mnemonic Quantity Width

(bits) Register Name R/W Special Register 
Number1

MMID 1 32 Memory Map Id W 89
1. Registers with a Special Register assignment are read with the RSR instruction. See Table 5–127 on page 205.
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5. Processor State

The architectural state of an Xtensa machine consists of its AR register file, a PC, Special 
Registers, User Registers, TLB entries, and additional register files (added by options 
and designer’s TIE). The Windowed Register Option causes an increase in the physical 
size of the AR register file but does not change the number of registers visible by instruc-
tions at any given time. To a lesser extent, caches and local memories can be consid-
ered in some ways to be architectural state. The subsections of this chapter cover each 
of these categories of state in turn.

The Floating-Point Coprocessor Option adds the FR register file and two User Registers 
called FCR and FSR. The Region Protection Option and the MMU Option add ITLB En-
tries and DTLB Entries. Other options add only Special Registers. Designer’s TIE may 
add User Registers, and additional register files. Only the AR register file, the PC, and 
SAR are in all Xtensa processors.

Table 5–127 contains an alphabetical list of all Tensilica-defined registers that make up 
Xtensa processor state, including the registers added by all architectural options. The 
Special Register number column of most entries contains a Special Register number, 
which can be looked up in Section 5.3 for more information. The last column contains a 
reference where more information can be found in the pages following the table.

Table 5–127.  Alphabetical List of Processor State 

Name1 Description Required Configuration 
Option

Special 
Register 
Number

More Detail

ACCHI Accumulator high bits MAC16 Option 17 Table 5–133
ACCLO Accumulator low bits MAC16 Option 16 Table 5–132

AR
Address registers (general 
registers)

Core Architecture — Section 5.1

ATOMCTL Atomic Operation Control Conditional Store Option 99 Table 5–186
BR Boolean registers / register file Boolean Option 4 Table 5–136
CACHEATTR Cache attribute XEA1 Only — see page 611 98 Table 9-250
CCOMPARE0..2 Cycle number to interrupt Timer Interrupt Option 240-242 Table 5–176
CCOUNT Cycle count Timer Interrupt Option 234 Table 5–175
CPENABLE Coprocessor enable bits Coprocessor Option 224 Table 5–184
DBREAKA0..2 Data break address Debug Option 144-145 Table 5–180
DBREAKC0..2 Data break control Debug Option 160-161 Table 5–179
1 Used in RSR, WSR, and XSR instructions.
2 FCR & FSR are User Registers where most are system registers. These names are used in RUR and WUR instructions.
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DEBUGCAUSE Cause of last debug exception Debug Option 233 Table 5–159
DDR Debug data register Debug Option 104 Table 5–183
DEPC Double exception PC Exception Option 192 Table 5–162

DTLB Entries Data TLB entries Region Protection Option or 
MMU Option 

— Section 5.5

DTLBCFG Data TLB configuration MMU Option 92 Table 5–152
EPC1 Level-1 exception PC Exception Option 177 Table 5–160
EPC2..7 High level exception PC High-Priority Interrupt Option 178-183 Table 5–161
EPS2..7 High level exception PS High-Priority Interrupt Option 194-199 Table 5–164
EXCCAUSE Cause of last exception Exception Option 232 Table 5–153
EXCSAVE1 Level-1 exception save location Exception Option 209 Table 5–166

EXCSAVE2..7
High level exception save 
location

High-Priority Interrupt Option 210-215 Table 5–167

EXCVADDR Exception virtual address Exception Option 238 Table 5–154

FCR
Floating point control register Floating-Point Coprocessor 

Option
— Table 5–189

FR
Floating point registers Floating-Point Coprocessor 

Option
— Section 5.6

FSR
Floating point status register Floating-Point Coprocessor 

Option
— Table 5–190

IBREAKA0..2 Instruction break address Debug Option 128-129 Table 5–178
IBREAKENABLE Instruction break enable bits Debug Option 96 Table 5–177
ICOUNT Instruction count Debug Option 236 Table 5–173
ICOUNTLEVEL Instruction count level Debug Option 237 Table 5–174

INTCLEAR
Clear requests in 
INTERRUPT

Interrupt Option 227 Table 5–171

INTENABLE Interrupt enable bits Interrupt Option 228 Table 5–172
INTERRUPT Interrupt request bits Interrupt Option 226 Table 5–169
INTSET Set Requests in INTERRUPT Interrupt Option 226 Table 5–170

ITLB Entries Instruction TLB entries Region Protection Option or 
MMU Option

— Section 5.5

ITLBCFG Instruction TLB configuration MMU Option 91 Table 5–151

Table 5–127.  Alphabetical List of Processor State (continued)

Name1 Description Required Configuration 
Option

Special 
Register 
Number

More Detail

1 Used in RSR, WSR, and XSR instructions.
2 FCR & FSR are User Registers where most are system registers. These names are used in RUR and WUR instructions.
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LBEG Loop-begin address Loop Option 0 Table 5–129
LCOUNT Loop count Loop Option 2 Table 5–131
LEND Loop-end address Loop Option 1 Table 5–130
LITBASE Literal base Extended L32R Option 5 Table 5–137

M0..3
MAC16 data registers/register 
file

MAC16 Option 32-35 Table 5–134

MECR Memory error check register Memory ECC/Parity Option 110 Table 5–157
MEPC Memory error PC register Memory ECC/Parity Option 106 Table 5–163
MEPS Memory error PS register Memory ECC/Parity Option 107 Table 5–165
MESAVE Memory error save register Memory ECC/Parity Option 108 Table 5–168
MESR Memory error status register Memory ECC/Parity Option 109 Table 5–156

MEVADDR
Memory error virtual addr 
register

Memory ECC/Parity Option 111 Table 5–158

MISC0..3
Misc register 0-3 Miscellaneous Special 

Registers Option
244-247 Table 5–185

MMID Memory map ID Trace Port Option 89 Table 5–182

MR
MAC16 Data registers/register 
file

MAC16 Option 32-35 Table 5–134

PC Program counter Core Architecture — Section 5.2
PRID Processor Id Processor ID Option 235 Table 5–181
PS Processor state See Table 4–63 on page 87 230 Table 5–139
PTEVADDR Page table virtual address MMU Option 83 Table 5–149
RASID Ring ASID values MMU Option 90 Table 5–150
SAR Shift-amount register Core Architecture 3 Table 5–135

SCOMPARE1
Expected data value for 
S32C1I

Multiprocessor 
Synchronization Option

12 Table 5–138

THREADPTR Thread pointer Thread Pointer Option — Table 5–188
VECBASE Vector Base Relocatable Vector Option 231 Table 5–155
WindowBase Base of current AR window Windowed Register Option 72 Table 5–147
WindowStart Call-window start bits Windowed Register Option 73 Table 5–148

Table 5–127.  Alphabetical List of Processor State (continued)

Name1 Description Required Configuration 
Option

Special 
Register 
Number

More Detail

1 Used in RSR, WSR, and XSR instructions.
2 FCR & FSR are User Registers where most are system registers. These names are used in RUR and WUR instructions.
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5.1 General Registers

Many Xtensa instructions operate on the general registers in the AR register file. The in-
structions view sixteen such registers at any given time and usually have a 4-bit specifi-
er field in the instruction for each register they access.

These general registers are named address registers (AR) to distinguish them from the 
many different types of data registers that can be added to the instruction set 
(Section 5.6). Although the AR registers can be used to hold data as well, they are in-
volved with both the instruction set and the execution pipeline in such a way as to make 
them ideally suited to contain addresses and the information used to compute address-
es. They are ideally suited to computing branch conditions and targets as well, and as 
such fill the role of general registers in the Xtensa instruction set.

When the Windowed Register Option is enabled, there are actually more than sixteen 
registers in the AR register file. The windowed register ABI, described in Section 8.1, 
can be used in combination with the Windowed Register Option to make use of the addi-
tional registers and avoid many of the register saves and restores that would normally 
be associated with calls and returns. This improves both the speed and the code density 
of Xtensa processors.

Reads from and writes to the AR register file are always interlocked by hardware. No 
synchronization instructions are ever required by them.

The contents of the AR register file are undefined after reset.

5.2 Program Counter

The program counter (PC) holds the address of the next instruction to execute. It is 
updated by instructions as they execute. Non-branch instructions simply increment it by 
their length. Branch instructions, when taken, load it with a new value. Call and return in-
structions exist, which move values between the PC and general register AR[0]. Op-
tions such as the Loop Option change the PC in other useful ways. 

Changes to and uses of the PC are always interlocked by hardware. No synchronization 
instructions are ever required by them.

5.3 Special Registers

Special Registers hold the majority of the state added to the processor by the Options 
listed in Chapter 4. Table 5–128 shows the Special Registers in numerical order with ref-
erences to a more detailed description. Special Registers not listed in Table 5–128 are 
reserved for future use.
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Table 5–128.  Numerical List of Special Registers 

Name1 Description Required Configuration 
Option

Special 
Register 
Number

More Detail

LBEG Loop-begin address Loop Option 0 Table 5–129
LEND Loop-end address Loop Option 1 Table 5–130
LCOUNT Loop count Loop Option 2 Table 5–131
SAR Shift-amount register Core Architecture 3 Table 5–135
BR Boolean registers / register file Boolean Option 4 Table 5–136
LITBASE Literal base Extended L32R Option 5 Table 5–137

SCOMPARE1
Expected data value for 
S32C1I

Conditional Store Option 12 Table 5–138

ACCLO Accumulator low bits MAC16 Option 16 Table 5–132
ACCHI Accumulator high bits MAC16 Option 17 Table 5–133

M0..3 / MR
MAC16 data registers / register 
file

MAC16 Option 32-35 Table 5–134

WindowBase Base of current AR window Windowed Register Option 72 Table 5–147
WindowStart Call-window start bits Windowed Register Option 73 Table 5–148
PTEVADDR Page table virtual address MMU Option 83 Table 5–149
MMID Memory map ID Trace Port Option 89 Table 5–182
RASID Ring ASID values MMU Option 90 Table 5–150
ITLBCFG Instruction TLB configuration MMU Option 91 Table 5–151
DTLBCFG Data TLB configuration MMU Option 92 Table 5–152
IBREAKENABLE Instruction break enable bits Debug Option 96 Table 5–177
CACHEATTR Cache attribute XEA1 Only - see page 611 98 Table 9-250
ATOMCTL Atomic Operation Control Conditional Store Option 99 Table 5–186
DDR Debug data register Debug Option 104 Table 5–183
MEPC Memory error PC register Memory ECC/Parity Option 106 Table 5–163
MEPS Memory error PS register Memory ECC/Parity Option 107 Table 5–165
MESAVE Memory error save register Memory ECC/Parity Option 108 Table 5–168
MESR Memory error status register Memory ECC/Parity Option 109 Table 5–156
MECR Memory error check register Memory ECC/Parity Option 110 Table 5–157

MEVADDR
Memory error virtual addr 
register

Memory ECC/Parity Option 111 Table 5–158

IBREAKA0..1 Instruction break address Debug Option 128-129 Table 5–178
1 Used in RSR, WSR, and XSR instructions.
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Section 5.3.1 describes the process of reading and writing these special registers, while 
the sections that follow describe groups of specific Special Registers in more detail. A 
table is included for each special register, which includes information specific to that 
special register. The gray shaded rows describe the information that is contained in the 
unshaded rows immediately below them.

DBREAKA0..1 Data break address Debug Option 144-145 Table 5–180
DBREAKC0..1 Data break control Debug Option 160-161 Table 5–179
EPC1 Level-1 exception PC Exception Option 177 Table 5–160
EPC2..7 High level exception PC High-Priority Interrupt Option 178-183 Table 5–161
DEPC Double exception PC Exception Option 192 Table 5–162
EPS2..7 High level exception PS High-Priority Interrupt Option 194-199 Table 5–164
EXCSAVE1 Level-1 exception save location Exception Option 209 Table 5–166

EXCSAVE2..7
High level exception save 
location

High-Priority Interrupt Option 210-215 Table 5–167

CPENABLE Coprocessor enable bits Coprocessor Option 224 Table 5–184
INTERRUPT Interrupt request bits Interrupt Option 226 Table 5–169
INTSET Set requests in INTERRUPT Interrupt Option 226 Table 5–170
INTCLEAR Clear requests in INTERRUPT Interrupt Option 227 Table 5–171
INTENABLE Interrupt enable bits Interrupt Option 228 Table 5–172
PS Processor state See Table 4–63 on page 87 230 Table 5–139
VECBASE Vector Base Relocatable Vector Option 231 Table 5–155
EXCCAUSE Cause of last exception Exception Option 232 Table 5–153
DEBUGCAUSE Cause of last debug exception Debug Option 233 Table 5–159
CCOUNT Cycle count Timer Interrupt Option 234 Table 5–175
PRID Processor Id Processor ID Option 235 Table 5–181
ICOUNT Instruction count Debug Option 236 Table 5–173
ICOUNTLEVEL Instruction count level Debug Option 237 Table 5–174
EXCVADDR Exception virtual address Exception Option 238 Table 5–154

CCOMPARE0..2
Cycle number to generate 
interrupt

Timer Interrupt Option 240-242 Table 5–176

MISC0..3
Misc register 0-3 Miscellaneous Special 

Registers Option
244-247 Table 5–185

Table 5–128.  Numerical List of Special Registers (continued)

Name1 Description Required Configuration 
Option

Special 
Register 
Number

More Detail

1 Used in RSR, WSR, and XSR instructions.
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The first row shows the Special Register number, the Name (which is used in the RSR.*, 
WSR.*, and XSR.* instruction names), a short description, and the value immediately 
after reset.

The second row shows the Option that creates the Special Register, the count or num-
ber of such special registers, the number of bits in the special register, whether access 
to the register is privileged (requires CRING=0) or not, and whether XSR.* is a legal in-
struction or not. The Option that creates the Special Register is described in Chapter 4 
including more information on each Special Register.

The third row shows the function of the WSR.* and RSR.* instructions for this Special 
Register. The function of the XSR.* instruction is the combination of the RSR.* and the 
WSR.* instructions.

The fourth row shows the other instructions that affect or are affected by this Special 
Register.

The last row of each Special Register’s table shows what SYNC instructions are 
required when using this Special Register. If no SYNC instructions are ever required, the 
row is left out. On the left is an instruction or other action that changes the value of the 
Special Register. On the right is an instruction or other action that makes use of the val-
ue of the Special Register. If a SYNC instruction is required for this pair of operations to 
work as they should, it is listed in the middle. Wherever a DSYNC is required an ISYNC, 
RSYNC, or ESYNC can also be used. Wherever an ESYNC is required an ISYNC or RSYNC 
can also be used. Wherever an RSYNC is required an ISYNC can also be used. Note that 
the 16-bit versions (*.N) of 24-bit instructions are not listed separately but always have 
exactly the same requirements. Versions T1050 and before required additional SYNC 
instructions in some cases as described in Section A.8 on page 621.

Because of the importance of its subfields, the PS Special Register is a special case. Its 
subfields are listed in the same format as special registers. The synchronizations need-
ed simply because the register has been written are listed under the entire register, 
while the synchronizations needed because the value of a subfield has been changed 
are listed under the subfield.

5.3.1 Reading and Writing Special Registers

The RSR.*, WSR.*, and XSR.* instructions access the special registers. The accesses 
to the Special Registers act as separate instructions in many ways. For the full instruc-
tion name, replace the ‘*’ in the instructions with the name as given in the Special 
Register Tables in this section.

Each RSR.* instruction moves a value from a Special Register to a general (AR) regis-
ter. Each WSR.* instruction moves a value from a general (AR) register to a Special Reg-
ister. Each XSR.* instruction exchanges the values in a general (AR) register and a Spe-
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cial Register. Some Special Registers do not allow this exchange. The Special Register 
tables in this section show which do and do not allow this exchange. The exchange 
takes place with the two reads taking place first, and then the two writes. In some cases, 
the write of a Special Register can affect other behavior of the processor. In general, this 
behavior change does not occur until after the instruction (including XSR.*) has com-
pleted execution.

Some of the Special Registers have interactions with other instructions or with hardware 
execution. These interactions are also listed in the Special Register tables in this sec-
tion. Because modification of many Special Registers is an unusual occurrence, syn-
chronization instructions are used to ensure that their values have propagated every-
where before certain other actions are allowed to take place. Some of the interlocks 
would be costly in performance or in gates if done in hardware, and the synchronization 
instructions can be the most efficient solution.

5.3.2 LOOP Special Registers

The Loop Option adds the three registers shown in Table 5–129 through Table 5–131 for 
controlling zero overhead loops. When the PC reaches LEND, it executes at LBEG in-
stead and decrements LCOUNT. When LCOUNT reaches zero, the loop back does not oc-
cur.

Table 5–129.  LBEG - Special Register #0 
SR# Name Description Reset Value

0 LBEG Loop begin - address of beginning of zero overhead loop Undefined
Option Count Bits Privileged? XSR Legal?

Loop Option 1 32 No Yes
WSR Function RSR Function

LBEG ← AR[t] AR[t] ← LBEG

Other Changes to the Register Other Effects of the Register
LOOP/LOOPGTZ/LOOPNEZ Branch at end of zero overhead loop

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR LBEG ⇒ ISYNC ⇒ Potential branch caused by attempt to execute LEND
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5.3.3 MAC16 Special Registers

The MAC16 Option adds the six registers described in Table 5–132 through 
Table 5–134.

Table 5–130.  LEND - Special Register #1 
SR# Name Description Reset Value

1 LEND Loop end - address of instruction after zero overhead loop Undefined
Option Count Bits Privileged? XSR Legal?

Loop Option 1 32 No Yes
WSR Function RSR Function

LEND ← AR[t] AR[t] ← LEND

Other Changes to the Register Other Effects of the Register
LOOP/LOOPGTZ/LOOPNEZ Branch at end of zero overhead loop

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR LEND ⇒ ISYNC ⇒ Potential branch caused by attempt to execute LEND

Table 5–131.  LCOUNT - Special Register #2
SR# Name Description Reset Value

2 LCOUNT Loop count remaining Undefined
Option Count Bits Privileged? XSR Legal?

Loop Option 1 32 No Yes
WSR Function RSR Function

LCOUNT ← AR[t] AR[t] ← LCOUNT

Other Changes to the Register Other Effects of the Register
LOOP/LOOPGTZ/LOOPNEZ Branch at end of zero overhead loop

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR LCOUNT ⇒ ESYNC ⇒ RSR/XSR LCOUNT
WSR/XSR LCOUNT ⇒ ISYNC ⇒ Potential branch caused by attempt to execute LEND

WSR/XSR LCOUNT to zero⇒ ISYNC ⇒ WSR/XSR PS.EXCM with zero (for protection)
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Table 5–132.  ACCLO - Special Register #16 
SR# Name Description Reset Value

16 ACCLO Accumulator - low bits Undefined
Option Count Bits Privileged? XSR Legal?

MAC16 Option 1 32 No Yes
WSR Function RSR Function

ACC31..0 ← AR[t] AR[t] ← ACC31..0
Other Changes to the Register Other Effects of the Register

MUL.*/MULA.*/MULS.*/UMUL.* MULA.*/MULS.*

Table 5–133.  ACCHI - Special Register #17 
SR# Name Description Reset Value

17 ACCHI Accumulator - high bits Undefined
Option Count Bits Privileged? XSR Legal?

MAC16 Option 1 8 No Yes
WSR Function RSR Function

ACC39..32 ← AR[t]7..0
Undefined if AR[t]31..8 ≠ AR[t]724

AR[t] ← ACC39
24||ACC39..32

Other Changes to the Register Other Effects of the Register
MUL.*/MULA.*/MULS.*/UMUL.* MULA.*/MULS.*

Table 5–134.  M0..3 - Special Register #32-35 
SR# Name Description Reset Value

32-35 M0..3 / MR1 MAC16 data registers / register file1 Undefined
Option Count Bits Privileged? XSR Legal?

MAC16 Option 4 32 No Yes
WSR Function RSR Function

M[sr1..0] ← AR[t] AR[t] ← M[sr1..0]

Other Changes to the Register Other Effects of the Register
LDDEC/LDINC/MULA*.LDDEC/MULA*.LDINC MUL.*D*/MULA.*D*/MULS.*D*
1 These registers are known as MR[0..3] in hardware and as m0..3 in the software.
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5.3.4 Other Unprivileged Special Registers

The SAR Special Register is included in the Xtensa Core Architecture, while the BR, 
LITBASE, and SCOMPARE1 Special Registers are added by the options shown along 
with other information about them in Table 5–135 through Table 5–138.

Table 5–135.  SAR - Special Register #3 
SR# Name Description Reset Value

3 SAR Shift amount register Undefined
Option Count Bits Privileged? XSR Legal?

Core Architecture (see page 25) 1 6 No Yes
WSR Function RSR Function

SAR ← AR[t]5..0
Undefined if AR[t]31..6 ≠ 026 AR[t] ← 026||SAR

Other Changes to the Register Other Effects of the Register
SSL/SSR/SSAI/SSA8B/SSA8L SLL/SRL/SRA/SRC

Table 5–136.  BR - Special Register #4 
SR# Name Description Reset Value

4 BR / b0..151 Boolean register / register file1 Undefined
Option Count Bits Privileged? XSR Legal?

Boolean Option 1 16 No Yes
WSR Function RSR Function

BR ← AR[t]15..0
Undefined if AR[t]31..16 ≠ 016 AR[t] ← 016||BR

Other Changes to the Register Other Effects of the Register
ALL4/ALL8/ANDB/ANDBC/ANY4/ANY8/
ORB/ORBC/XORB/OEQ.S/OLE.S/OLT.S/
UEQ.S/ULE.S/ULT.S/UN.S/User TIE

ALL4/ALL8/ANDB/ANDBC/ANY4/ANY8/
ORB/ORBC/XORB/
BF/BT/MOVF/MOVF.S/MOVT/MOVT.S

1 This register is known as Special Register BR or as individual Boolean bits b0..15.
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5.3.5 Processor Status Special Register

The Processor Status Special Register is made up of multiple fields with different pur-
poses within the processor. They are combined into one register to simplify the saving 
and restoring of state for exceptions, interrupts, and context switches. Table 5–139 
describes the register as a whole, while Table 5–140 through Table 5–146 describe the 
individual pieces of the register in a similar format.

The synchronization section of Table 5–139 gives requirements that must be met when-
ever the PS register is written regardless of whether any of its bits are changed. The 
synchronization sections of Table 5–140 through Table 5–146 give requirements that 
must be met only if that portion of the PS register is being modified.

Table 5–137.  LITBASE - Special Register #5 
SR# Name Description Reset Value

5 LITBASE Literal base register bit-0 clear1

Option Count Bits Privileged? XSR Legal?
Extended L32R Option 1 21 No Yes

WSR Function RSR Function
LITBASE ← AR[t]31..12||011||AR[t]0
Undefined if AR[t]11..1 ≠ 011 AR[t] ← LITBASE31..12||011||LITBASE0

Other Changes to the Register Other Effects of the Register
L32R

1 After reset bit-0 is clear but the remainder of the register is undefined.

Table 5–138.  SCOMPARE1 - Special Register #12 
SR# Name Description Reset Value

12 SCOMPARE1 Comparison register for the S32C1I instruction Undefined
Option Count Bits Privileged? XSR Legal?

Conditional Store Option 1 32 No Yes
WSR Function RSR Function

SCOMPARE1 ← AR[t] AR[t] ← SCOMPARE1

Other Changes to the Register Other Effects of the Register
S32C1I
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Table 5–139.  PS - Special Register #230 
SR# Name Description Reset Value

230 PS Miscellaneous program state 0x10 or 0x1F1

Option Count Bits Privileged? XSR Legal?
Exception Option 1 15 Yes Yes

WSR Function RSR Function
PS ← 013||AR[t]18..16||04||AR[t]11..0
PS.RING should be changed only when CEXCM=1 
before the instruction making the change.

AR[t] ← PS

Other Changes to the Register Other Effects of the Register
CALL[X]4-12/RFE/RFDO/RFDD/RFWO/RFWU/RFI
RSIL/WAITI/interrupts/exceptions

CALL[X]4-12/ENTRY/RETW/interrupts/loop-back
Privileged-instructions/ld-st-instructions/exceptions

Instruction ⇒ xSYNC ⇒ Instruction 
See following entries for subfields of PS. Write to PS.X means a write to PS that changes subfield X.
1 PS is 5’h1F after reset if the.Interrupt Option is configured but reads as 5’h10 if it is not.

Table 5–140.  PS.INTLEVEL - Special Register #230 (part) 
SR# Name Description Reset Value

230 Part PS.INTLEVEL Interrupt level mask part of PS (Table 5–139) 0x0 or 0xF1

Option Count Bits Privileged? XSR Legal?
Interrupt Option 1 4 Yes Yes

WSR Function RSR Function
(see Table 5–139) (see Table 5–139)

Other Changes to the Register Other Effects of the Register
RFI/RFDD/RFDO/RSIL/WAITI/
Hi-level-interrupts/debug-exceptions/NMI RSIL/interrupts/debug-exceptions

Instruction ⇒ xSYNC ⇒ Instruction
Write to PS.INTLEVEL is a write to PS that changes subfield INTLEVEL.

WSR/XSR PS.INTLEVEL ⇒ RSYNC ⇒ Change in accepting interrupts
If PS.EXCM and PS.INTLEVEL are both changed in the same WSR.PS or XSR.PS instruction in such a way 
that a particular interrupt is forbidden both before and after the instruction, there will be no cycle during the instruction 
where the interrupt may be taken. Thus PS.EXCM may be cleared and PS.INTLEVEL raised (or PS.EXCM set 
and PS.INTLEVEL lowered) in the same instruction and no gap is opened between them.

WSR/XSR PS.INTLEVEL ⇒ DSYNC ⇒ Change in taking debug exception (interrupt level)
RFI/RFDD/RFDO/RSIL/WAITI ⇒ (none) ⇒ RSIL or change in accepting interrupts/debug-exceptions
Hi-level-interrupts/debug-excep/NMI⇒ (none) ⇒ RSIL or change in accepting interrupts/debug-exceptions

1 PS.INTLEVEL is 4’hF after reset if the.Interrupt Option is configured but reads as 4’h0 if it is not.
Xtensa Instruction Set Architecture (ISA) Reference Manual 217



Chapter 5. Processor State
Table 5–141.  PS.EXCM - Special Register #230 (part) 
SR# Name Description Reset Value

230 Part PS.EXCM Exception mask part of PS (Table 5–139) 0x1
Option Count Bits Privileged? XSR Legal?

Exception Option 1 1 Yes Yes
WSR Function RSR Function

(see Table 5–139) (see Table 5–139)
Other Changes to the Register Other Effects of the Register

RFI/RFDD/RFDO/RFE/RFWO/RFWU
interrupts/exceptions

CALL[X]4-12/ENTRY/RETW/interrupts/loop-back
Ifetch/privileged-instr/ld-st-instructions/exceptions

Instruction ⇒ xSYNC ⇒ Instruction
Write to PS.EXCM is a write to PS that changes subfield EXCM.

WSR/XSR PS.EXCM ⇒ ISYNC ⇒ Changes in instruction fetch privilege
WSR/XSR PS.EXCM ⇒ RSYNC ⇒ Change in accepting Interrupts

If PS.EXCM and PS.INTLEVEL are both changed in the same WSR.PS or XSR.PS instruction in such a way 
that a particular interrupt is forbidden both before and after the instruction, there will be no cycle during the instruction 
where the interrupt may be taken. Thus PS.EXCM may be cleared and PS.INTLEVEL raised (or PS.EXCM set 
and PS.INTLEVEL lowered) in the same instruction without a gap in interrupt masking.

WSR/XSR PS.EXCM to one ⇒ (none) ⇒ Restore non-zero LCOUNT value
WSR/XSR LCOUNT to zero ⇒ ISYNC ⇒ WSR/XSR PS.EXCM with zero (for protection)

WSR/XSR PS.EXCM ⇒ ESYNC ⇒ CALL[X]4-12/ENTRY/RETW

Note: In the Windowed Register Option, any instruction with an AR register operand can cause overflow exceptions.
WSR/XSR PS.EXCM ⇒ DSYNC ⇒ Changes in data fetch privilege
WSR/XSR PS.EXCM ⇒ (none) ⇒ Double exception vector or not

RFI/RFDD/RFDO/RFE ⇒ (none) ⇒ Anything
RFWO/RFWU ⇒ (none) ⇒ Anything

Interrupts/exceptions⇒ (none) ⇒ Anything
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Table 5–142.  PS.UM - Special Register #230 (part) 
SR# Name Description Reset Value

230 Part PS.UM User vector mode part of PS (Table 5–139) 0x0
Option Count Bits Privileged? XSR Legal?

Exception Option 1 1 Yes Yes
WSR Function RSR Function

(see Table 5–139) (see Table 5–139)
Other Changes to the Register Other Effects of the Register

RFI/RFDD/RFDO
RSIL/level-1-interrupts
general-exceptionsdebug-exceptions

Instruction ⇒ xSYNC ⇒ Instruction
Write to PS.UM is a write to PS that changes subfield UM.

WSR/XSR PS.UM ⇒ RSYNC ⇒ Level-1-interrupts/general-exceptions/debug-exceptions
Note: In the Windowed Register Option, any instruction with an AR register operand can cause overflow exceptions.

Table 5–143.  PS.RING - Special Register #230 (part) 
SR# Name Description Reset Value

230 Part PS.RING Ring part of PS (Table 5–139) 0x0
Option Count Bits Privileged? XSR Legal?

MMU Option 1 2 Yes Yes
WSR Function RSR Function

(see Table 5–139) (see Table 5–139)
Other Changes to the Register Other Effects of the Register

RFI/RFDD/RFDO
Hi-level-interrupts/debug-exception/
Privileged-instructions/ld-st-instructions

Instruction ⇒ xSYNC ⇒ Instruction
Write to PS.RING is a write to PS that changes subfield RING.

WSR/XSR PS.RING ⇒ ISYNC ⇒ Changes in instruction fetch privilege
WSR/XSR PS.RING ⇒ DSYNC ⇒ Changes in data fetch privilege
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Table 5–144.  PS.OWB - Special Register #230 (part) 
SR# Name Description Reset Value

230 Part PS.OWB Old window base part of PS (Table 5–139) 0x0
Option Count Bits Privileged? XSR Legal?

Windowed Register Option 1 4 Yes Yes
WSR Function RSR Function

(see Table 5–139) (see Table 5–139)
Other Changes to the Register Other Effects of the Register

RFI/RFDD/RFDO/overflow-or-underflow-exception RFWO/RFWU/RSIL/hi-level-interrupt/debug-exception

Table 5–145.  PS.CALLINC - Special Register #230 (part) 
SR# Name Description Reset Value

230 Part PS.CALLINC Call increment part of PS (Table 5–139) 0x0
Option Count Bits Privileged? XSR Legal?

Windowed Register Option 1 2 Yes Yes
WSR Function RSR Function

(see Table 5–139) (see Table 5–139)
Other Changes to the Register Other Effects of the Register

CALL[X]4-12/RFI/RFDD/RFDO ENTRY/RSIL/hi-level-interrupt/debug-exception

Table 5–146.  PS.WOE - Special Register #230 (part) 
SR# Name Description Reset Value

230 Part PS.WOE Window overflow enable part of PS (Table 5–139) 0x0
Option Count Bits Privileged? XSR Legal?

Windowed Register Option 1 1 Yes Yes
WSR Function RSR Function

(see Table 5–139) (see Table 5–139)
Other Changes to the Register Other Effects of the Register

RFI/RFDD/RFDO
CALL4-12/CALLX4-12/ENTRY/RETW/RSIL/
Hi-level-interrupt/debug-exception/overflow-exception

Instruction ⇒ xSYNC ⇒ Instruction
Write to PS.WOE is a write to PS that changes subfield WOE.

WSR/XSR PS.WOE ⇒ RSYNC ⇒ CALL4-12/CALLX4-12/ENTRY/RETW

WSR/XSR PS.WOE ⇒ RSYNC ⇒ Overflow-exception
Note: In the Windowed Register Option, any instruction with an AR register operand can cause overflow exceptions.
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5.3.6 Windowed Register Option Special Registers

The Windowed Register Option Special registers are described in Table 5–147 and 
Table 5–148.

5.3.7 Memory Management Special Registers

The Special Registers for managing memory are described in Table 5–149 through 
Table 5–152.

Table 5–147.  WindowBase - Special Register #72 
SR# Name Description Reset Value

72 WindowBase Base of current AR register window Undefined
Option Count Bits Privileged? XSR Legal?

Windowed Register Option 1 log2(NAREG/4) Yes Yes
WSR Function RSR Function

WindowBase ← AR[t]X-1..0
Undefined if AR[t]31..X ≠ 032-X
X = log2(NAREG/4)

AR[t] ← 032-X||WindowBase

X = log2(NAREG/4)
Other Changes to the Register Other Effects of the Register

ENTRY/MOVSP/RETW/RFW*/ROTW
Overflow/underflow-exception Any instruction which accesses the AR register file

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR WINDOWBASE ⇒ RSYNC ⇒ Any use or def of an ARregister

Table 5–148.  WindowStart - Special Register #73 
SR# Name Description Reset Value

73 WindowStart Call-window start bits Undefined
Option Count Bits Privileged? XSR Legal?

Windowed Register Option 1 NAREG/4 Yes Yes
WSR Function RSR Function

WindowStart ← AR[t]NAREG/4-1..0
Undefined if AR[t]31..NAREG/4 ≠ 032-NAREG/4 AR[t] ← 032-NAREG/4||WindowStart

Other Changes to the Register Other Effects of the Register
ENTRY/MOVSP/RETW/RFWO/RFWU Any instruction which accesses the AR register file

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR WINDOWSTART ⇒ RSYNC ⇒ Any use of an AR register when CWOE=1
WSR/XSR WINDOWSTART ⇒ RSYNC ⇒ Any def of an AR register when CWOE=1
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Table 5–149.  PTEVADDR - Special Register #83 
SR# Name Description Reset Value

83 PTEVADDR Virtual address for page table lookups Undefined
Option Count Bits Privileged? XSR Legal?

MMU Option 1 32 Yes Yes
WSR Function RSR Function

PTEVADDRVABITS-1..X ← AR[t]VABITS-1..X
X = VABITS+log2(PTEbytes)-
min(PTEPageSizes)

AR[t] ← PTEVADDRVABITS-1..Y||0Y
Y = log2(PTEbytes)

Other Changes to the Register Other Effects of the Register
Any instruction/data address translation

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR PTEVADDR ⇒ ISYNC ⇒ Any instruction access that might miss the ITLB
WSR/XSR PTEVADDR ⇒ DSYNC ⇒ Any load/store access that might miss the DTLB

Table 5–150.  RASID - Special Register #90 
SR# Name Description Reset Value

90 RASID Current ASID values for each protection ring 0x04030201
Option Count Bits Privileged? XSR Legal?

MMU Option 1 32 Yes Yes
WSR Function RSR Function

RASID ← AR[t]31..8||07||11 AR[t] ← RASID

Other Changes to the Register Other Effects of the Register
Any instruction/data address translation

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR RASID ⇒ ISYNC ⇒ Instruction address translation that depends on the change
WSR/XSR RASID ⇒ DSYNC ⇒ Data address translation that depends on the change
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5.3.8 Exception Support Special Registers

The Special Registers that provide information for the handling of an exception are 
described in Table 5–153 through Table 5–159.

Table 5–151.  ITLBCFG - Special Register #91 
SR# Name Description Reset Value

91 ITLBCFG Instruction TLB configuration 0x00000000
Option Count Bits Privileged? XSR Legal?

MMU Option 1 32 Yes Yes
WSR Function RSR Function

ITLBCFG ← AR[t]
Affected ways should be invalidated after change. AR[t] ← ITLBCFG

Other Changes to the Register Other Effects of the Register
Any instruction address translation

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR ITLBCFG ⇒ ISYNC ⇒ Instruction address translation that depends on the change

Table 5–152.  DTLBCFG - Special Register #92 
SR# Name Description Reset Value

92 DTLBCFG Data TLB configuration 0x00000000
Option Count Bits Privileged? XSR Legal?

MMU Option 1 32 Yes Yes
WSR Function RSR Function

DTLBCFG ← AR[t]
Affected ways should be invalidated after change. AR[t] ← DTLBCFG

Other Changes to the Register Other Effects of the Register
Any data address translation

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR DTLBCFG ⇒ DSYNC ⇒ Any data address translation that depends on the change
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Table 5–153.  EXCCAUSE - Special Register #232 
SR# Name Description Reset Value

232 EXCCAUSE Exception cause register Undefined
Option Count Bits Privileged? XSR Legal?

Exception Option 1 6 Yes Yes
WSR Function RSR Function

EXCCAUSE ← AR[t]5..0
Undefined if AR[t]31..6 ≠ 026 AR[t] ← 026||EXCCAUSE

Other Changes to the Register Other Effects of the Register
Exception or interrupt

Table 5–154.  EXCVADDR - Special Register #238 
SR# Name Description Reset Value

238 EXCVADDR Exception virtual address register Undefined
Option Count Bits Privileged? XSR Legal?

Exception Option 1 32 Yes Yes
WSR Function RSR Function

EXCVADDR ← AR[t]
AR[t] ← EXCVADDR
AR[t] is undefined if CEXCM = 0

Other Changes to the Register Other Effects of the Register
Some exceptions (see Table 4–64 on page 89), hardware 
table walk (see Section 4.6.5.9 on page 174)

Table 5–155.  VECBASE - Special Register #231 
SR# Name Description Reset Value

231 VECBASE Vector Base User Defined1

Option Count Bits Privileged? XSR Legal?
Relocatable Vector Option 1 32 Yes Yes

WSR Function RSR Function
VECBASE ← AR[t] AR[t] ← VECBASE

Other Changes to the Register Other Effects of the Register
Exception Vector Locations

1 The reset value of VECBASE is set by the user as part of the configuration
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Table 5–156.  MESR - Special Register #109 
SR# Name Description Reset Value

109 MESR Memory error status register 32’hXXXX0C00
Option Count Bits Privileged? XSR Legal?

Memory ECC/Parity Option 1 32 Yes Yes
WSR Function RSR Function

MESR ← AR[t] AR[t] ← MESR

Other Changes to the Register Other Effects of the Register
Memoryerror-exception, memory error without exception Controls memory error logic

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR MESR ⇒ ISYNC ⇒ Change in error behavior on instruction memories
WSR/XSR MESR ⇒ DSYNC ⇒ Change in error behavior on data memories

Table 5–157.  MECR - Special Register #110 
SR# Name Description Reset Value

110 MECR Memory error check register Undefined
Option Count Bits Privileged? XSR Legal?

Memory ECC/Parity Option 1 22 Yes Yes
WSR Function RSR Function

MECR ← AR[t] AR[t] ← MECR

Other Changes to the Register Other Effects of the Register
Memoryerror-exception, memory error without exception, 
Loads when MESR[9] is set. Stores when MESR[9] is set.

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR MECR ⇒ ISYNC ⇒ Check bit write to instruction memories
WSR/XSR MECR ⇒ DSYNC ⇒ Check bit write to data memories

Table 5–158.  MEVADDR - Special Register #111 
SR# Name Description Reset Value

111 MEVADDR Memory error virtual address register Undefined
Option Count Bits Privileged? XSR Legal?

Memory ECC/Parity Option 1 32 Yes Yes
WSR Function RSR Function

MEVADDR ← AR[t] AR[t] ← MEVADDR

Other Changes to the Register Other Effects of the Register
Memoryerror-exception, memory error without exception
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5.3.9 Exception State Special Registers

The Special Registers that save the PC and PS values and an initial register value for 
each of the levels are described in Table 5–160 through Table 5–162.

Table 5–159.  DEBUGCAUSE - Special Register #233 
SR# Name Description Reset Value

233 DEBUGCAUSE Debug cause register Undefined
Option Count Bits Privileged? XSR Legal?

Debug Option 1 12 Yes No
WSR Function RSR Function

Reserved AR[t] ← 020||DEBUGCAUSE
Other Changes to the Register Other Effects of the Register

Debug exception or interrupt

Table 5–160.  EPC1 - Special Register #177 
SR# Name Description Reset Value

177 EPC1 Exception PC[1] Undefined
Option Count Bits Privileged? XSR Legal?

Exception Option 1 32 Yes Yes
WSR Function RSR Function

EPC[1] ← AR[t] AR[t] ← EPC[1]

Other Changes to the Register Other Effects of the Register
General-exception/overflow-or-underflow-exception RFE/RFWO/RFWU

Table 5–161.  EPC2..7 - Special Register #178-183 
SR# Name Description Reset Value

178-183 EPC2..7 Exception PC[2..7] Undefined
Option Count Bits Privileged? XSR Legal?

High-Priority Interrupt Option NLEVEL
+NNMI-1

32 Yes Yes

WSR Function RSR Function

EPC[sr3..0] ← AR[t]
AR[t] ← EPC[sr3..0]
AR[t] is undefined if sr3..0 > NLEVEL+NNMI

Other Changes to the Register Other Effects of the Register
Level[sr3..0]-Interrupt/debug-exception/NMI RFI[sr3..0]/RFDO/RFDD
226 Xtensa Instruction Set Architecture (ISA) Reference Manual



Chapter 5. Processor State
Table 5–162.  DEPC - Special Register #192 
SR# Name Description Reset Value

192 DEPC Double exception PC Undefined
Option Count Bits Privileged? XSR Legal?

Exception Option 1 32 Yes Yes
WSR Function RSR Function

DEPC ← AR[t] AR[t] ← DEPC

Other Changes to the Register Other Effects of the Register
Double exception RFDE

Table 5–163.  MEPC - Special Register #106 
SR# Name Description Reset Value

106 MEPC Memory error PC register Undefined
Option Count Bits Privileged? XSR Legal?

Memory ECC/Parity Option 1 32 Yes Yes
WSR Function RSR Function

MEPC ← AR[t]
AR[t] ← MEPC
AR[t] is undefined unless MESR[0] is set.

Other Changes to the Register Other Effects of the Register
Memoryerror-exception RFME

Table 5–164.  EPS2..7 - Special Register #194-199 
SR# Name Description Reset Value

194-199 EPS2..7 Exception processor status register[2..7] Undefined
Option Count Bits Privileged? XSR Legal?

High-Priority Interrupt Option NLEVEL
+NNMI-1

32 Yes Yes

WSR Function RSR Function

EPS[sr3..0] ← AR[t]
AR[t] ← EPS[sr3..0]
AR[t] is undefined if sr3..0 > NLEVEL+NNMI

Other Changes to the Register Other Effects of the Register
Level[sr3..0]-Interrupt/debug-exception/NMI RFI[sr3..0]/RFDO/RFDD
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Table 5–165.  MEPS - Special Register #107 
SR# Name Description Reset Value

107 MEPS Memory error PS register Undefined
Option Count Bits Privileged? XSR Legal?

Memory ECC/Parity Option 1 32 Yes Yes
WSR Function RSR Function

MEPS ← AR[t]
AR[t] ← MEPS
AR[t] is undefined unless MESR[0] is set.

Other Changes to the Register Other Effects of the Register
Memoryerror-exception RFME

Table 5–166.  EXCSAVE1 - Special Register #192 
SR# Name Description Reset Value

192 EXCSAVE1 Exception save register[1] Undefined
Option Count Bits Privileged? XSR Legal?

Exception Option 1 32 Yes Yes
WSR Function RSR Function

EXCSAVE[1] ← AR[t] AR[t] ← EXCSAVE[1]

Other Changes to the Register Other Effects of the Register

Table 5–167.  EXCSAVE2..7- Special Register #210-215 
SR# Name Description Reset Value

210-215 EXCSAVE2..7 Exception save register[2..7] Undefined
Option Count Bits Privileged? XSR Legal?

High-Priority Interrupt Option NLEVEL
+NNMI-1

32 Yes Yes

WSR Function RSR Function

EXCSAVE[sr3..0] ← AR[t]
AR[t] ← EXCSAVE[sr3..0]
AR[t] is undefined if sr3..0 > NLEVEL+NNMI

Other Changes to the Register Other Effects of the Register
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5.3.10 Interrupt Special Registers

The Special Registers that manage interrupt handling are described in Table 5–169 
through Table 5–172.

Table 5–168.  MESAVE- Special Register #108 
SR# Name Description Reset Value

109 MESAVE Memory error save register Undefined
Option Count Bits Privileged? XSR Legal?

Memory ECC/Parity Option 1 32 Yes Yes
WSR Function RSR Function

MESAVE ← AR[t] AR[t] ← MESAVE

Other Changes to the Register Other Effects of the Register

Table 5–169.  INTERRUPT - Special Register #226 (read) 
SR# Name Description Reset Value

226 INTERRUPT Interrupt pending register Undefined
Option Count Bits Privileged? XSR Legal?

Interrupt Option 1 NINTERRUPT Yes No
WSR Function RSR Function

see Table 5–170 and Table 5–171 AR[t] ← 032-NINTERRUPT||INTERRUPT
Other Changes to the Register Other Effects of the Register

Assertion/deassertion of interrupt signals/
WSR.CCOMPAREn Pipeline takes interrupt

Instruction ⇒ xSYNC ⇒ Instruction
WSR INTSET ⇒ ESYNC ⇒ RSR INTERRUPT

WSR INTCLEAR ⇒ ESYNC ⇒ RSR INTERRUPT
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Table 5–170.  INTSET - Special Register #226 (write) 
SR# Name Description Reset Value

226 INTSET Interrupt set register No separate state
Option Count Bits Privileged? XSR Legal?

Interrupt Option 1 NINTERRUPT Yes No
WSR Function RSR Function

INTERRUPT ← INTERRUPT or AR[t]X-1..0
Undefined if AR[t]31..X ≠ 032-X
X = NINTERRUPT
Only software interrupt bits can be set.

see Table 5–169

Other Changes to the Register Other Effects of the Register
(State is INTERRUPT) (State is INTERRUPT)

Instruction ⇒ xSYNC ⇒ Instruction
WSR INTSET ⇒ ESYNC ⇒ RSR INTERRUPT

WSR INTSET⇒ RSYNC ⇒ Instruction which must execute after the software interrupt

Table 5–171.  INTCLEAR - Special Register #227 
SR# Name Description Reset Value

227 INTCLEAR Interrupt clear register No separate state
Option Count Bits Privileged? XSR Legal?

Interrupt Option 1 NINTERRUPT Yes No
WSR Function RSR Function

INTERRUPT ← INTERRUPT and not AR[t]X-1..0
Undefined if AR[t]31..X ≠ 032-X
X = NINTERRUPT
Bits in AR[t]X-1..0 may be set without causing harm. 
Only bits which can be cleared by this write are affected.

AR[t] ← undefined32

Other Changes to the Register Other Effects of the Register
(State is INTERRUPT) (State is INTERRUPT)

Instruction ⇒ xSYNC ⇒ Instruction
WSR INTCLEAR ⇒ ESYNC ⇒ RSR INTERRUPT

WSR INTCLEAR⇒ RSYNC ⇒ Instruction which must execute after the cleared interrupt
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5.3.11 Timing Special Registers

The Special Registers that manage instruction counting and cycle counting, including 
timer interrupts are described in Table 5–173 through Table 5–176.

Table 5–172.  INTENABLE - Special Register #228 
SR# Name Description Reset Value

228 INTENABLE Interrupt enable register Undefined
Option Count Bits Privileged? XSR Legal?

Interrupt Option 1 NINTERRUPT Yes Yes
WSR Function RSR Function

INTENABLE ← AR[t]NINTERRUPT-1..0
Undefined if AR[t]31..X ≠ 032-X
X = NINTERRUPT

AR[t] ← 032-NINTERRUPT||INTENABLE

Other Changes to the Register Other Effects of the Register
Pipeline takes interrupt

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR INTENABLE ⇒ ESYNC ⇒ RSR/XSR INTENABLE
WSR/XSR INTENABLE⇒ RSYNC ⇒ Any instruction which must wait for INTENABLE changes

Table 5–173.  ICOUNT - Special Register #236 
SR# Name Description Reset Value

236 ICOUNT Instruction count register Undefined
Option Count Bits Privileged? XSR Legal?

Debug Option 1 2 or 32 Yes Yes
WSR Function RSR Function

ICOUNT ← AR[t]
Write when CINTLEVEL ≥ ICOUNTLEVEL

AR[t] ← ICOUNT
Defined only when CINTLEVEL ≥ ICOUNTLEVEL

Other Changes to the Register Other Effects of the Register
Increment on appropriate cycles Debug exception

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR ICOUNT ⇒ ESYNC ⇒ RSR/XSR ICOUNT

WSR/XSR ICOUNT⇒ ISYNC ⇒ Ending CINTLEVEL ≥ ICOUNTLEVEL
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Table 5–174.  ICOUNTLEVEL - Special Register #237 
SR# Name Description Reset Value

237 ICOUNTLEVEL Instruction count level register Undefined
Option Count Bits Privileged? XSR Legal?

Debug Option 1 4 Yes Yes
WSR Function RSR Function

ICOUNTLEVEL ← AR[t]3..0
Undefined if AR[t]31..4 ≠ 028
Write when CINTLEVEL ≥ old ICOUNTLEVEL
Write when CINTLEVEL ≥ new ICOUNTLEVEL

AR[t] ← 028||ICOUNTLEVEL

Other Changes to the Register Other Effects of the Register
Debug exception

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR ICOUNTLEVEL ⇒ ISYNC ⇒ Ending CINTLEVEL ≥ old ICOUNTLEVEL
WSR/XSR ICOUNTLEVEL ⇒ ISYNC ⇒ Ending CINTLEVEL ≥ new ICOUNTLEVEL

Table 5–175.  CCOUNT - Special Register #234 
SR# Name Description Reset Value

234 CCOUNT Cycle count register Undefined
Option Count Bits Privileged? XSR Legal?

Timer Interrupt Option 1 32 Yes Yes
WSR Function RSR Function

CCOUNT ← AR[t]
Precise cycle of write is not defined
Not usually written during normal operation.

AR[t] ← CCOUNT
Precise cycle of read is not defined.

Other Changes to the Register Other Effects of the Register
Increment each cycle Generates Timer Interrupt

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR CCOUNT⇒ ESYNC ⇒ RSR/XSR CCOUNT
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5.3.12 Breakpoint Special Registers

The Special Registers that manage the handling of breakpoint exceptions are described 
in Table 5–177 through Table 5–180.

Table 5–176.  CCOMPARE0..2 - Special Register #240-242 
SR# Name Description Reset Value

240-242 CCOMPARE0..2 Cycle count compare registers Undefined
Option Count Bits Privileged? XSR Legal?

Timer Interrupt Option NCCOMPARE 32 Yes Yes
WSR Function RSR Function

CCOMPARE[sr1..0] ← AR[t]
INTERRUPTi ← 0; i is position of timer interrupt

AR[t] ← CCOMPARE[sr1..0]
AR[t] is undefined if sr1..0 ≥ NCOMPARE

Other Changes to the Register Other Effects of the Register
Timer Interrupt

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR CCOMPARE0..2 ⇒ ESYNC ⇒ RSR/XSR CCOUNT (to ensure CCOUNT<CCOMPAREn)

WSR/XSR CCOMPARE0..2⇒ RSYNC ⇒ Any instruction which must execute after the update

Table 5–177.  IBREAKENABLE - Special Register #96 
SR# Name Description Reset Value

96 IBREAKENABLE Instruction breakpoint enable register 0NIBREAK

Option Count Bits Privileged? XSR Legal?
Debug Option 1 NIBREAK Yes Yes

WSR Function RSR Function
IBREAKENABLE ← AR[t]NIBREAK-1..0
Undefined if AR[t]31..NIBREAK ≠ 032-NIB AR[t] ← 032-NIBREAK||IBREAKENABLE

Other Changes to the Register Other Effects of the Register
Any instruction fetch

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR IBREAKENABLE ⇒ ISYNC ⇒ Any instruction access that might raise a breakpoint
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Table 5–178.  IBREAKA0..1 - Special Register #128-129 
SR# Name Description Reset Value

128-129 IBREAKA0..1 Instruction breakpoint address registers Undefined
Option Count Bits Privileged? XSR Legal?

Debug Option NIBREAK 32 Yes Yes
WSR Function RSR Function

IBREAKA[sr3..0] ← AR[t]
Operation is undefined if sr3..0 ≥ NIBREAK

AR[t] ← IBREAKA[sr3..0]
AR[t] is undefined if sr3..0 ≥ NIBREAK

Other Changes to the Register Other Effects of the Register
Any instruction fetch

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR IBREAKA0..1 ⇒ ISYNC ⇒ Any instruction access which might raise that breakpoint

Table 5–179.  DBREAKC0..1 - Special Register #160-161 
SR# Name Description Reset Value

160-161 DBREAKC0..1 Data breakpoint control registers Undefined
Option Count Bits Privileged? XSR Legal?

Debug Option NDBREAK 32 Yes Yes
WSR Function RSR Function

DBREAKC[sr3..0] ← AR[t]
Operation is undefined if sr3..0 ≥ NDBREAK

AR[t] ← DBREAKC[sr3..0]
AR[t] is undefined if sr3..0 ≥ NDBREAK

Other Changes to the Register Other Effects of the Register
Any data access

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR DBREAKC0..1 ⇒ DSYNC ⇒ Any load/store access which might raise that breakpoint
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5.3.13 Other Privileged Special Registers

The Special Registers for other purposes are described in Table 5–181 through 
Table 5–186.

Table 5–180.  DBREAKA0..1 - Special Register #144-145 
SR# Name Description Reset Value

144-145 DBREAKA0..1 Data breakpoint address registers Undefined
Option Count Bits Privileged? XSR Legal?

Debug Option NDBREAK 32 Yes Yes
WSR Function RSR Function

DBREAKA[sr3..0] ← AR[t]
Operation is undefined if sr3..0 ≥ NDBREAK

AR[t] ← DBREAKA[sr3..0]
AR[t] is undefined if sr3..0 ≥ NDBREAK

Other Changes to the Register Other Effects of the Register
Any data access

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR DBREAKA0..1 ⇒ DSYNC ⇒ Any load/store access which might raise that breakpoint

Table 5–181.  PRID - Special Register #235 
SR# Name Description Reset Value

235 PRID Processor identification register Pins
Option Count Bits Privileged? XSR Legal?

Processor ID Option 1 32 Yes No
WSR Function RSR Function

Reserved AR[t] ← PRID

Other Changes to the Register Other Effects of the Register
Trailing edge of RESET

Table 5–182.  MMID - Special Register #89 
SR# Name Description Reset Value

89 MMID Memory map identification register Undefined
Option Count Bits Privileged? XSR Legal?

Trace Port Option 1 32 Yes No
WSR Function RSR Function

ID written to Trace Port Reserved

Other Changes to the Register Other Effects of the Register
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Table 5–183.  DDR - Special Register #104 
SR# Name Description Reset Value

104 DDR Debug data register Undefined
Option Count Bits Privileged? XSR Legal?

Debug Option1 1 32 Yes Yes
WSR Function RSR Function

DDR ← AR[t]2 AR[t] ← DDR2

Other Changes to the Register Other Effects of the Register

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR DDR⇒ ESYNC ⇒ RSR/XSR DDR

1) The DDR register is actually created by the OCD Option but is listed with the Debug Option, which is a prerequisite for the OCD Option.
2) In some implementations the DDR state is different for reads and writes; WSR.DDR followed by RSR.DDR may not return the original value.

Table 5–184.  CPENABLE - Special Register #224 
SR# Name Description Reset Value

224 CPENABLE Coprocessor enable register Undefined
Option Count Bits Privileged? XSR Legal?

Coprocessor Option 1 1-8 Yes Yes
WSR Function RSR Function

CPENABLE ← AR[t]7..0
Undefined if AR[t]31..8 ≠ 024

AR[t] ← 024||CPENABLE (Bits corresponding to 
unused coprocessors are not defined on read.)

Other Changes to the Register Other Effects of the Register
Every coprocessor instruction

Table 5–185.  MISC0..3 - Special Register #244-247 
SR# Name Description Reset Value

244-247 MISC0..3 Miscellaneous special registers Undefined
Option Count Bits Privileged? XSR Legal?

Miscellaneous Special Registers 
Option

NMISC 32 Yes Yes

WSR Function RSR Function

MISC[sr1..0] ← AR[t]
AR[t] ← MISC[sr1..0]
AR[t] is undefined if sr1..0 ≥ NMISC

Other Changes to the Register Other Effects of the Register
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5.4 User Registers

User Registers hold state added in support of designer’s TIE and in some cases of op-
tions that Tensilica provides. See the Tensilica Instruction Extension (TIE) Language 
User’s Guide for more information on adding User Registers to a design. Table 5–187 
shows the User Registers in numerical order with references to a more detailed descrip-
tion. User Registers with numbers greater than or equal to 224 but not listed in 
Table 5–187 are reserved for future use.

5.4.1 Reading and Writing User Registers

Use the RUR.* and WUR.* instructions to access the user registers. The accesses to 
the User Registers act as separate instructions in many ways. Replace the ‘*’ in the in-
structions with the name of the User Register as specified by the designer or given in 
Table 5–189 and Table 5–190.

Table 5–186.  ATOMCTL - Special Register #99 
SR# Name Description Reset Value

99 ATOMCTL Atomic Operation Control 0x28
Option Count Bits Privileged? XSR Legal?

Conditional Store Option 1 6 Yes Yes
WSR Function RSR Function

ATOMCTL ← AR[t] AR[t] ← ATOMCTL

Other Changes to the Register Other Effects of the Register
Function of S32C1I

Table 5–187.  Numerical List of User Registers 

Name1 Description Required Configuration 
Option

User 
Register 
Number

More 
Detail

Available for designer extensions 0-223

THREADPTR
Thread pointer Thread Pointer Option 231 Table 5–1

88

FCR
Floating point control register Floating-Point Coprocessor 

Option
232 Table 5–1

89

FSR
Floating point status register Floating-Point Coprocessor 

Option
233 Table 5–1

90
1 Used in RUR and WUR instructions.
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RUR.* instructions move values from a User Register to a general (AR) register. WUR.* 
instructions move values from a general (AR) register to a User Register. The User Reg-
isters are fully interlocked in hardware and do not need SYNC instructions.

5.4.2 The List of User Registers

Table 5–188 throughTable 5–190 list detailed information for each of the User Registers 
that Tensilica Options define. 

The first row shows the User Register number, the name (which is used in the RUR.*, 
WUR.* instruction names), a short description, and the value immediately after reset.

The second row shows the Option that creates the User Register, the count or number 
of such User Registers, the number of bits in the User Register, and whether access to 
the register is privileged (requires CRING=0) or not. The option that creates the User 
Register is described in Chapter 4 including more information on each User Register.

The third row shows the function of the WUR.* and RUR.* instructions for this User Reg-
ister. 

The fourth row shows the other instructions that affect or are affected by this User Reg-
ister.

The last row of each User Register’s table shows that SYNC instructions are not 
required.

User Registers 0-223 are reserved for designer’s use, and are never used by Tensilica 
Options. User Registers 224-255 can be used by a designer but their use may prohibit 
compatibility with some Tensilica-provided Options either now or in the future. Additional 
state registers may be added without built-in access instructions.

Table 5–188.  THREADPTR - User Register #231 
UR# Name Description Reset Value

231 THREADPTR Thread pointer Undefined
Option Count Bits Privileged?

Thread Pointer Option 1 32 No
WUR Function RUR Function

THREADPTR ← AR[t] AR[t] ← THREADPTR

Other Changes to the Register Other Effects of the Register
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5.5 TLB Entries

Although some information for the instruction and data TLBs is held in the Special 
Registers, the protection and translation entries themselves are held in a special type of 
state called ITLB entries and DTLB entries. These entries are added by the Region Pro-
tection Option and the MMU Option.

These entries are accessed by special instructions for reading and writing the entries. 
There are also instructions for probing to see if an entry exists that will match a particu-
lar virtual address. In addition, there are instructions for invalidating particular entries. 
The instructions added for these purposes are listed under the Region Protection Option 
and the MMU Option.

After changing an Instruction TLB entry, an ISYNC must be executed before executing 
any instruction that is accessed using that TLB. After changing a data TLB entry, a 
DSYNC must be executed before any load or store that uses that entry (see 
Section 4.6.3.3, Section 4.6.4.2, Section 4.6.5.5, and Section 4.6.5.8 for more detailed 
information).

Table 5–189.  FCR - User Register #232 
UR# Name Description Reset Value

232 FCR Floating point control register Undefined
Option Count Bits Privileged?

Floating-Point Coprocessor Option 1 7 No
WUR Function RUR Function

FCR ← AR[t] AR[t] ← FCR

Other Changes to the Register Other Effects of the Register
Most floating point computations

Table 5–190.  FSR - User Register #233 
UR# Name Description Reset Value

233 FSR Floating point status register Undefined
Option Count Bits Privileged?

Floating-Point Coprocessor Option 1 5 No
WUR Function RUR Function

FSR ← AR[t] AR[t] ← FSR

Other Changes to the Register Other Effects of the Register
Most floating point computations
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Chapter 5. Processor State
5.6 Additional Register Files

Additional register files also hold state added in support of designer’s TIE and in some 
cases of Tensilica-provided Options. There are no built-in instructions for accessing add-
ed register files in the same manner as the RUR.*, and WUR.* instructions can be used 
to access the user registers. See the Tensilica Instruction Extension (TIE) Language 
User’s Guide for more information on adding register files to a design.

As shown in Table 5–127, the Floating-Point Coprocessor Option creates the FR register 
file, which is an instance of this capability in a Tensilica-provided Option. The FR register 
file contains sixteen registers of 32 bits each in support of the floating point instruction 
set. There is no windowing in the FR register file.

Reads from and writes to these additional register files are always interlocked by hard-
ware. No synchronization instructions are ever required by them.

The contents of these additional register files are undefined after reset.

5.7 Caches and Local Memories

Local memories are always architectural state. However, for many purposes caches are 
not architectural state in that they merely reflect the contents of main memory but pro-
vide lower latency access for the processor. When considering the cache control instruc-
tions added with the caches or the requirements placed upon software for maintaining 
coherence between processors/devices in their views of memory, caches sometimes act 
like architectural state.

Section 4.5.2 through Section 4.5.12 describe the options for adding caches and local 
memories to Xtensa processors.

Self-modifying code is not automatically supported in Xtensa processors. The instruction 
cache is not kept coherent with main memory because there is no hardware for observ-
ing writes to memory and determining whether or not those writes could have any affect 
on the instruction cache. Any time memory that could possibly be contained in the in-
struction cache is changed, the OS must ensure that the changes have been written 
back to system memory and invalidate either the specific locations that have been 
changed or else the entire instruction cache. See the description of the ISYNC instruc-
tion for more details.

In addition, because the instruction unit of the Xtensa processor fetches ahead, syn-
chronization instructions are needed whenever an instruction local memory or instruc-
tion cache is modified before it can be certain that the instruction fetch engine will see 
the changes. For local memories, this means an ISYNC instruction is needed after any 
change to the instruction memory and before the execution of any instruction involved in 
the change. For instruction caches, this means an ISYNC instruction is needed after any 
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change to the cache data, or the cache tag (including the invalidation required when 
main memory that could possibly be held in the icache is modified) and before the exe-
cution of any instruction involved in the change.

The operation of all instructions to data local memory or data cache is fully interlocked in 
hardware. And except for the instruction fetch discussed above, the operation of all in-
structions to instruction local memory or instruction cache is fully interlocked in hard-
ware. Loads and stores, tag accesses, cache invalidations, cache line locks/unlocks, 
prefetches, and write backs all operate in order to the same cache locations because of 
the hardware interlocking. Accesses to different addresses are not necessarily in order 
(see Section 4.3.12.1).

Both the data and the tag stores of instruction caches and data caches are ordinary syn-
chronous SRAMs, which are not expected to be defined after reset.
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6. Instruction Descriptions

This chapter describes, in alphabetical order, each of the Xtensa ISA instructions in the 
Core Architecture described in Chapter 3, or in Architecture Options described in 
Chapter 4.

Before reading this chapter, Tensilica recommends reviewing the notation defined in 
Table 2–6 on page 21, Uses Of Instruction Fields.

Note that instructions with a “Required Configuration Option” specification other than 
“Core Architecture” are illegal if the corresponding option is not enabled, and will raise 
an illegal instruction exception.

The instruction word included with each instruction is the little-endian version (see 
Section 2.1 “Bit and Byte Order” and Chapter 7 "Instruction Formats and Opcodes" on 
page 569). The big-endian instruction word may be determined for any instruction by 
separating the little-endian instruction word at the vertical bars and reassembling the 
pieces in the reverse order. For example, following is the little-endian instruction word 
shown on page 273 for the BEQI instruction:

Following is the derived big-endian instruction word for the BEQI instruction:

The format listed after the instruction word at the top of each instruction page can also 
be used along with Section 7.1 “Formats” to derive the big-endian encoding.

For each instruction, the exceptions that can possibly result from its execution are listed. 
Because many of the potential exceptions are common to a large number of instruc-
tions, exception groups are used to save space and improve understanding. Following 
are the common exception groups that are referenced in the instructions. A reference to 
one of these groups means that any of the exceptions in the group can be raised by that 
instruction. Note that the groups often include previous groups.

23 16 15 12 11 8 7 6 5 4 3 0

imm8 r s 0 0 1 0 0 1 1 0

8 4 4 2 2 4

0 3 4 5 6 7 8 11 12 15 16 23

0 1 1 0 1 0 0 0 s r imm8

4 2 2 4 4 8
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In the following groups and in the instruction descriptions, GenExcep() is a general 
exception that goes to UserExceptionVector, KernelExceptionVector, or 
DoubleExceptionVector; the parentheses contain the cause that will appear in 
EXCCAUSE. DebugExcep() is a debug exception that goes to the high level interrupt for 
debug and the parentheses contain the cause that will appear in DEBUGCAUSE. Win-
dowOverExcep is one of the three sizes of windowed register overflow exceptions1 and 
WindowUnderExcep is one of the three sizes of windowed register underflow excep-
tions2. After any exceptions in the list there is an option without which that exception 
cannot be taken.

EveryInst Group:
GenExcep(InstructionFetchErrorCause) if Exception Option
GenExcep(InstTLBMissCause) if Region Protection Option or MMU Option
GenExcep(InstTLBMultiHitCause) if Region Protection Option or MMU Option
GenExcep(InstFetchPrivilegeCause) if Region Protection Option or MMU Option
GenExcep(InstFetchProhibitedCause) if Region Protection Option or MMU Option
MemoryErrorException on Instruction-fetch if Memory ECC/Parity Option
DebugExcep(ICOUNT) if Debug Option
DebugExcep(IBREAK) if Debug Option

EveryInstR Group:
EveryInst Group (see page 244)
WindowOverExcep if Windowed Register Option

Memory Group:
EveryInstR Group (see page 244)
GenExcep(LoadStoreErrorCause) if Exception Option
GenExcep(LoadStoreTLBMissCause) if Region Protection Option or MMU Option
GenExcep(LoadStoreTLBMultiHitCause) if Region Protection Option or MMU Option
GenExcep(LoadStorePrivilegeCause) if Region Protection Option or MMU Option
MemoryErrorException on non-Instruction-fetch if Memory ECC/Parity Option

Memory Load Group:
Memory Group (see page 244)

1. WindowOverflow4, WindowOverflow8, or WindowOverflow12.
2. WindowUnderflow4, WindowUnderflow8, or WindowUnderflow12.
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GenExcep(LoadProhibitedCause) if Region Protection Option or MMU Option
GenExcep(LoadStoreAlignmentCause) if Unaligned Exception Option
DebugExcep(DBREAK) if Debug Option

Memory Store Group:
Memory Group (see page 244)
GenExcep(StoreProhibitedCause) if Region Protection Option or MMU Option
GenExcep(LoadStoreAlignmentCause) if Unaligned Exception Option
DebugExcep(DBREAK) if Debug Option
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ABS Absolute Value
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

ABS ar, at

Description

ABS calculates the absolute value of the contents of address register at and writes it to 
address register ar. Arithmetic overflow is not detected.

Operation

AR[r] ← if AR[t]31 then −AR[t] else AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 1 0 0 0 0 0 r 0 0 0 1 t 0 0 0 0

4 4 4 4 4 4
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Absolute Value Single ABS.S
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

ABS.S fr, fs

Description

ABS.S computes the single-precision absolute value of the contents of floating-point 
register fs and writes the result to floating-point register fr.

Operation

FR[r] ← abss(FR[s])

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 1 0 1 0 r s 0 0 0 1 0 0 0 0

4 4 4 4 4 4
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ADD Add
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

ADD ar, as, at

Description

ADD calculates the two’s complement 32-bit sum of address registers as and at. The 
low 32 bits of the sum are written to address register ar. Arithmetic overflow is not 
detected.

ADD is a 24-bit instruction. The ADD.N density-option instruction performs the same 
operation in a 16-bit encoding.

Assembler Note

The assembler may convert ADD instructions to ADD.N when the Code Density Option is 
enabled. Prefixing the ADD instruction with an underscore (_ADD) disables this optimiza-
tion and forces the assembler to generate the wide form of the instruction.

Operation

AR[r] ← AR[s] + AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 0 0 0 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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Narrow Add ADD.N
Instruction Word (RRRN)

Required Configuration Option

Code Density Option (See Section 4.3.1 on page 53)

Assembler Syntax

ADD.N ar, as, at

Description

This performs the same operation as the ADD instruction in a 16-bit encoding.

ADD.N calculates the two’s complement 32-bit sum of address registers as and at. The 
low 32 bits of the sum are written to address register ar. Arithmetic overflow is not 
detected.

Assembler Note

The assembler may convert ADD.N instructions to ADD. Prefixing the ADD.N instruction 
with an underscore (_ADD.N) disables this optimization and forces the assembler to 
generate the narrow form of the instruction.

Operation

AR[r] ← AR[s] + AR[t]

Exceptions

EveryInstR Group (see page 244)

15 12 11 8 7 4 3 0

r s t 1 0 1 0

4 4 4 4
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ADD.S Add Single
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

ADD.S fr, fs, ft

Description

ADD.S computes the IEEE754 single-precision sum of the contents of floating-point 
registers fs and ft, and writes the result to floating-point register fr.

Operation

FR[r] ← FR[s] +s FR[t]

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 1 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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Add Immediate ADDI
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

ADDI at, as, -128..127

Description

ADDI calculates the two’s complement 32-bit sum of address register as and a constant 
encoded in the imm8 field. The low 32 bits of the sum are written to address register at. 
Arithmetic overflow is not detected.

The immediate operand encoded in the instruction can range from -128 to 127. It is de-
coded by sign-extending imm8.

ADDI is a 24-bit instruction. The ADDI.N density-option instruction performs a similar 
operation (the immediate operand has less range) in a 16-bit encoding.

Assembler Note

The assembler may convert ADDI instructions to ADDI.N when the Code Density 
Option is enabled and the immediate operand falls within the available range. If the im-
mediate is too large the assembler may substitute an equivalent sequence. Prefixing the 
ADDI instruction with an underscore (_ADDI) disables these optimizations and forces 
the assembler to generate the wide form of the instruction or an error instead.

Operation

AR[t] ← AR[s] + (imm8724||imm8)

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 1 1 0 0 s t 0 0 1 0

8 4 4 4 4
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ADDI.N Narrow Add Immediate
Instruction Word (RRRN)

Required Configuration Option

Code Density Option (See Section 4.3.1 on page 53)

Assembler Syntax

ADDI.N ar, as, imm

Description

ADDI.N is similar to ADDI, but has a 16-bit encoding and supports a smaller range of 
immediate operand values encoded in the instruction word.

ADDI.N calculates the two’s complement 32-bit sum of address register as and an 
operand encoded in the t field. The low 32 bits of the sum are written to address regis-
ter ar. Arithmetic overflow is not detected.

The operand encoded in the instruction can be -1 or one to 15. If t is zero, then a value 
of -1 is used, otherwise the value is the zero-extension of t.

Assembler Note

The assembler may convert ADDI.N instructions to ADDI. Prefixing the ADDI.N instruc-
tion with an underscore (_ADDI.N) disables this optimization and forces the assembler 
to generate the narrow form of the instruction. In the assembler syntax, the number to 
be added to the register operand is specified. When the specified value is -1, the assem-
bler encodes it as zero.

Operation

AR[r] ← AR[s] + (if t = 04 then 132 else 028||t)

Exceptions

EveryInstR Group (see page 244)

15 12 11 8 7 4 3 0

r s t 1 0 1 1

4 4 4 4
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Add Immediate with Shift by 8 ADDMI
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

ADDMI at, as, -32768..32512

Description

ADDMI extends the range of constant addition. It is often used in conjunction with load 
and store instructions to extend the range of the base, plus offset the calculation.

ADDMI calculates the two’s complement 32-bit sum of address register as and an oper-
and encoded in the imm8 field. The low 32 bits of the sum are written to address register 
at. Arithmetic overflow is not detected.

The operand encoded in the instruction can have values that are multiples of 256 rang-
ing from -32768 to 32512. It is decoded by sign-extending imm8 and shifting the result 
left by eight bits.

Assembler Note

In the assembler syntax, the value to be added to the register operand is specified. The 
assembler encodes this into the instruction by dividing by 256.

Operation

AR[t] ← AR[s] + (imm8716||imm8||08)

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 1 1 0 1 s t 0 0 1 0

8 4 4 4 4
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ADDX2 Add with Shift by 1
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

ADDX2 ar, as, at

Description

ADDX2 calculates the two’s complement 32-bit sum of address register as shifted left by 
one bit and address register at. The low 32 bits of the sum are written to address regis-
ter ar. Arithmetic overflow is not detected.

ADDX2 is frequently used for address calculation and as part of sequences to multiply by 
small constants.

Operation

AR[r] ← (AR[s]30..0||0) + AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 0 1 0 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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Add with Shift by 2 ADDX4
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50r)

Assembler Syntax

ADDX4 ar, as, at

Description

ADDX4 calculates the two’s complement 32-bit sum of address register as shifted left by 
two bits and address register at. The low 32 bits of the sum are written to address reg-
ister ar. Arithmetic overflow is not detected.

ADDX4 is frequently used for address calculation and as part of sequences to multiply by 
small constants.

Operation

AR[r] ← (AR[s]29..0||02) + AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 1 0 0 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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ADDX8 Add with Shift by 3
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

ADDX8 ar, as, at

Description

ADDX8 calculates the two’s complement 32-bit sum of address register as shifted left by 
3 bits and address register at. The low 32 bits of the sum are written to address register 
ar. Arithmetic overflow is not detected.

ADDX8 is frequently used for address calculation and as part of sequences to multiply by 
small constants.

Operation

AR[r] ← (AR[s]28..0||03) + AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 1 1 0 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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All 4 Booleans True ALL4
Instruction Word (RRR)

Required Configuration Option

Boolean Option (See Section 4.3.10 on page 65)

Assembler Syntax

ALL4 bt, bs

Description

ALL4 sets Boolean register bt to the logical and of the four Boolean registers bs+0, 
bs+1, bs+2, and bs+3. bs must be a multiple of four (b0, b4, b8, or b12); otherwise the 
operation of this instruction is not defined. ALL4 reduces four test results such that the 
result is true if all four tests are true.

When the sense of the bs Booleans is inverted (0 → true, 1 → false), use ANY4 and an 
inverted test of the result.

Operation

BRt ← BRs+3 and BRs+2 and BRs+1 and BRs+0

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 1 0 0 1 s t 0 0 0 0

4 4 4 4 4 4
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ALL8 All 8 Booleans True
Instruction Word (RRR)

Required Configuration Option

Boolean Option (See Section 4.3.10 on page 65)

Assembler Syntax

ALL8 bt, bs

Description

ALL8 sets Boolean register bt to the logical and of the eight Boolean registers bs+0, 
bs+1, … bs+6, and bs+7. bs must be a multiple of eight (b0 or b8); otherwise the oper-
ation of this instruction is not defined. ALL8 reduces eight test results such that the re-
sult is true if all eight tests are true.

When the sense of the bs Booleans is inverted (0 → true, 1 → false), use ANY8 and an 
inverted test of the result.

Operation

BRt ← BRs+7 and ... and BRs+0

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 1 0 1 1 s t 0 0 0 0

4 4 4 4 4 4
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Bitwise Logical And AND
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

AND ar, as, at

Description

AND calculates the bitwise logical and of address registers as and at. The result is 
written to address register ar.

Operation

AR[r] ← AR[s] and AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 1 0 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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ANDB Boolean And
Instruction Word (RRR)

Required Configuration Option

Boolean Option (See Section 4.3.10 on page 65)

Assembler Syntax

ANDB br, bs, bt

Description

ANDB performs the logical and of Boolean registers bs and bt and writes the result to 
Boolean register br.

When the sense of one of the source Booleans is inverted (0 → true, 1 → false), use 
ANDBC. When the sense of both of the source Booleans is inverted, use ORB and an 
inverted test of the result.

Operation

BRr ← BRs and BRt

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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Boolean And with Complement ANDBC
Instruction Word (RRR)

Required Configuration Option

Boolean Option (See Section 4.3.10 on page 65)

Assembler Syntax

ANDBC br, bs, bt

Description

ANDBC performs the logical and of Boolean register bs with the logical complement of 
Boolean register bt, and writes the result to Boolean register br.

Operation

BRr ← BRs and not BRt

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 1 0 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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ANY4 Any 4 Booleans True
Instruction Word (RRR)

Required Configuration Option

Boolean Option (See Section 4.3.10 on page 65)

Assembler Syntax

ANY4 bt, bs

Description

ANY4 sets Boolean register bt to the logical or of the four Boolean registers bs+0, 
bs+1, bs+2, and bs+3. bs must be a multiple of four (b0, b4, b8, or b12); otherwise the 
operation of this instruction is not defined. ANY4 reduces four test results such that the 
result is true if any of the four tests are true.

When the sense of the bs Booleans is inverted (0 → true, 1 → false), use ALL4 and an 
inverted test of the result.

Operation

BRt ← BRs+3 or BRs+2 or BRs+1 or BRs+0

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 1 0 0 0 s t 0 0 0 0

4 4 4 4 4 4
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Any 8 Booleans True ANY8
Instruction Word (RRR)

Required Configuration Option

Boolean Option (See Section 4.3.10 on page 65)

Assembler Syntax

ANY8 bt, bs

Description

ANY8 sets Boolean register bt to the logical or of the eight Boolean registers bs+0, 
bs+1, … bs+6, and bs+7. bs must be a multiple of eight (b0 or b8); otherwise the oper-
ation of this instruction is not defined. ANY8 reduces eight test results such that the re-
sult is true if any of the eight tests are true.

When the sense of the bs Booleans is inverted (0 → true, 1 → false), use ALL8 and an 
inverted test of the result.

Operation

BRt ← BRs+7 or ... or BRs+0

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 1 0 1 0 s t 0 0 0 0

4 4 4 4 4 4
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BALL Branch if All Bits Set
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BALL as, at, label

Description

BALL branches if all the bits specified by the mask in address register at are set in ad-
dress register as. The test is performed by taking the bitwise logical and of at and the 
complement of as, and testing if the result is zero.

The target instruction address of the branch is given by the address of the BALL instruc-
tion, plus the sign-extended 8-bit imm8 field of the instruction plus four. If any of the 
masked bits are clear, execution continues with the next sequential instruction.

The inverse of BALL is BNALL.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BALL) disables 
this feature and forces the assembler to generate an error in this case.

Operation

if ((not AR[s]) and AR[t]) = 032 then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 0 1 0 0 s t 0 1 1 1

8 4 4 4 4
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Branch if Any Bit Set BANY
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BANY as, at, label

Description

BANY branches if any of the bits specified by the mask in address register at are set in 
address register as. The test is performed by taking the bitwise logical and of as and at 
and testing if the result is non-zero.

The target instruction address of the branch is given by the address of the BANY instruc-
tion, plus the sign-extended 8-bit imm8 field of the instruction plus four. If all of the 
masked bits are clear, execution continues with the next sequential instruction.

The inverse of BANY is BNONE.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BANY) disables 
this feature and forces the assembler to generate an error in this case.

Operation

if (AR[s] and AR[t]) ≠ 032 then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 1 0 0 0 s t 0 1 1 1

8 4 4 4 4
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BBC Branch if Bit Clear
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BBC as, at, label

Description

BBC branches if the bit specified by the low five bits of address register at is clear in ad-
dress register as. For little-endian processors, bit 0 is the least significant bit and bit 31 
is the most significant bit. For big-endian processors, bit 0 is the most significant bit and 
bit 31 is the least significant bit.

The target instruction address of the branch is given by the address of the BBC instruc-
tion, plus the sign-extended 8-bit imm8 field of the instruction plus four. If the specified 
bit is set, execution continues with the next sequential instruction.

The inverse of BBC is BBS.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BBC) disables this 
feature and forces the assembler to generate an error in this case.

Operation

b ← AR[t]4..0 xor msbFirst
5

if AR[s]b = 0 then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 0 1 0 1 s t 0 1 1 1

8 4 4 4 4
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Branch if Bit Clear Immediate BBCI
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BBCI as, 0..31, label

Description

BBCI branches if the bit specified by the constant encoded in the bbi field of the in-
struction word is clear in address register as. For little-endian processors, bit 0 is the 
least significant bit and bit 31 is the most significant bit. For big-endian processors bit 0 
is the most significant bit and bit 31 is the least significant bit. The bbi field is split, with 
bits 3..0 in bits 7..4 of the instruction word, and bit 4 in bit 12 of the instruction word.

The target instruction address of the branch is given by the address of the BBCI instruc-
tion, plus the sign-extended 8-bit imm8 field of the instruction plus four. If the specified 
bit is set, execution continues with the next sequential instruction.

The inverse of BBCI is BBSI.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BBCI) disables 
this feature and forces the assembler to generate an error in this case.

Operation

b ← bbi xor msbFirst5

if AR[s]b = 0 then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 0 1 1 bbi4 s bbi3..0 0 1 1 1

8 4 4 4 4
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BBCI.L Branch if Bit Clear Immediate LE
Instruction Word (RRI8)

Required Configuration Option

Assembler Macro

Assembler Syntax

BBCI.L as, 0..31, label

Description

BBCI.L is an assembler macro for BBCI that always uses little-endian bit numbering. 
That is, it branches if the bit specified by its immediate is clear in address register as, 
where bit 0 is the least significant bit and bit 31 is the most significant bit.

The inverse of BBCI.L is BBSI.L.

Assembler Note

For little-endian processors, BBCI.L and BBCI are identical. For big-endian processors, 
the assembler will convert BBCI.L instructions to BBCI by changing the encoded imme-
diate value to 31-imm.

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 0 1 1 bbi4 s bbi3..0 0 1 1 1

8 4 4 4 4
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Branch if Bit Set BBS
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BBS as, at, label

Description

BBS branches if the bit specified by the low five bits of address register at is set in ad-
dress register as. For little-endian processors, bit 0 is the least significant bit and bit 31 
is the most significant bit. For big-endian processors, bit 0 is the most significant bit and 
bit 31 is the least significant bit.

The target instruction address of the branch is given by the address of the BBS instruc-
tion, plus the sign-extended 8-bit imm8 field of the instruction plus four. If the specified 
bit is clear, execution continues with the next sequential instruction.

The inverse of BBS is BBC.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BBS) disables this 
feature and forces the assembler to generate an error in this case.

Operation

b ← AR[t]4..0 xor msbFirst
5

if AR[s]b ≠ 0 then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 1 1 0 1 s t 0 1 1 1

8 4 4 4 4
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BBSI Branch if Bit Set Immediate
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BBSI as, 0..31, label

Description

BBSI branches if the bit specified by the constant encoded in the bbi field of the in-
struction word is set in address register as. For little-endian processors, bit 0 is the least 
significant bit and bit 31 is the most significant bit. For big-endian processors, bit 0 is the 
most significant bit and bit 31 is the least significant bit. The bbi field is split, with bits 
3..0 in bits 7..4 of the instruction word, and bit 4 in bit 12 of the instruction word.

The target instruction address of the branch is given by the address of the BBSI instruc-
tion, plus the sign-extended 8-bit imm8 field of the instruction plus four. If the specified 
bit is clear, execution continues with the next sequential instruction.

The inverse of BBSI is BBCI.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BBSI) disables 
this feature and forces the assembler to generate an error in this case.

Operation

b ← bbi xor msbFirst5

if AR[s]b ≠ 0 then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 1 1 1 bbi4 s bbi3..0 0 1 1 1

8 4 4 4 4
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Branch if Bit Set Immediate LE BBSI.L
Instruction Word (RRI8)

Required Configuration Option

Assembler Macro

Assembler Syntax

BBSI.L as, 0..31, label

Description

BBSI.L is an assembler macro for BBSI that always uses little-endian bit numbering. 
That is, it branches if the bit specified by its immediate is set in address register as, 
where bit 0 is the least significant bit and bit 31 is the most significant bit.

The inverse of BBSI.L is BBCI.L.

Assembler Note

For little-endian processors, BBSI.L and BBSI are identical. For big-endian processors, 
the assembler will convert BBSI.L instructions to BBSI by changing the encoded imme-
diate value to 31-imm.

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 1 1 1 bbi4 s bbi 0 1 1 1

8 4 4 4 4
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BEQ Branch if Equal
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BEQ as, at, label

Description

BEQ branches if address registers as and at are equal.

The target instruction address of the branch is given by the address of the BEQ instruc-
tion plus the sign-extended 8-bit imm8 field of the instruction plus four. If the registers 
are not equal, execution continues with the next sequential instruction.

The inverse of BEQ is BNE.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BEQ) disables this 
feature and forces the assembler to generate an error in this case.

Operation

if AR[s] = AR[t] then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 0 0 0 1 s t 0 1 1 1

8 4 4 4 4
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Branch if Equal Immediate BEQI
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BEQI as, imm, label

Description

BEQI branches if address register as and a constant encoded in the r field are equal. 
The constant values encoded in the r field are not simply 0..15. For the constant values 
that can be encoded by r, see Table 3–17 on page 41.

The target instruction address of the branch is given by the address of the BEQI instruc-
tion, plus the sign-extended 8-bit imm8 field of the instruction plus four. If the register is 
not equal to the constant, execution continues with the next sequential instruction.

The inverse of BEQI is BNEI.

Assembler Note

The assembler may convert BEQI instructions to BEQZ or BEQZ.N when given an imme-
diate operand that evaluates to zero. The assembler will substitute an equivalent se-
quence of instructions when the label is out of range. Prefixing the instruction mnemonic 
with an underscore (_BEQI) disables these features and forces the assembler to gener-
ate an error instead.

Operation

if AR[s] = B4CONST(r) then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 6 5 4 3 0

imm8 r s 0 0 1 0 0 1 1 0

8 4 4 2 2 4
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BEQZ Branch if Equal to Zero
Instruction Word BRI12

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BEQZ as, label

Description

BEQZ branches if address register as is equal to zero. BEQZ provides 12 bits of target 
range instead of the eight bits available in most conditional branches.

The target instruction address of the branch is given by the address of the BEQZ instruc-
tion, plus the sign-extended 12-bit imm12 field of the instruction plus four. If register as 
is not equal to zero, execution continues with the next sequential instruction.

The inverse of BEQZ is BNEZ.

Assembler Note

The assembler may convert BEQZ instructions to BEQZ.N when the Code Density 
Option is enabled and the branch target is reachable with the shorter instruction. The 
assembler will substitute an equivalent sequence of instructions when the label is out of 
range. Prefixing the instruction mnemonic with an underscore (_BEQZ) disables these 
features and forces the assembler to generate the wide form of the instruction and an 
error when the label is out of range).

Operation

if AR[s] = 032 then
nextPC ← PC + (imm121120||imm12) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 12 11 8 7 6 5 4 3 0

imm12 s 0 0 0 1 0 1 1 0

12 4 2 2 4
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Narrow Branch if Equal Zero BEQZ.N
Instruction Word (RI6)

Required Configuration Option

Code Density Option (See Section 4.3.1 on page 53)

Assembler Syntax

BEQZ.N as, label

Description

This performs the same operation as the BEQZ instruction in a 16-bit encoding. BEQZ.N 
branches if address register as is equal to zero. BEQZ.N provides six bits of target 
range instead of the 12 bits available in BEQZ.

The target instruction address of the branch is given by the address of the BEQZ.N in-
struction, plus the zero-extended 6-bit imm6 field of the instruction plus four. Because 
the offset is unsigned, this instruction can only be used to branch forward. If register as 
is not equal to zero, execution continues with the next sequential instruction.

The inverse of BEQZ.N is BNEZ.N.

Assembler Note

The assembler may convert BEQZ.N instructions to BEQZ. The assembler will substitute 
an equivalent sequence of instructions when the label is out of range. Prefixing the in-
struction mnemonic with an underscore (_BEQZ.N) disables these features and forces 
the assembler to generate the narrow form of the instruction and an error when the label 
is out of range.

Operation

if AR[s] = 032 then
nextPC ← PC + (026||imm6) + 4

endif

Exceptions

EveryInstR Group (see page 244)

15 12 11 8 7 4 3 0

imm63..0 s 1 0 imm65..4 1 1 0 0

4 4 4 4
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BF Branch if False
Instruction Word (RRI8)

Required Configuration Option

Boolean Option (See Section 4.3.10 on page 65)

Assembler Syntax

BF bs, label

Description

BF branches to the target address if Boolean register bs is false.

The target instruction address of the branch is given by the address of the BF instruction 
plus the sign-extended 8-bit imm8 field of the instruction plus four. If the Boolean register 
bs is true, execution continues with the next sequential instruction.

The inverse of BF is BT.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BF) disables this 
feature and forces the assembler to generate an error when the label is out of range.

Operation

if not BRs then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInst Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 0 0 0 0 s 0 1 1 1 0 1 1 0

8 4 4 4 4
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Branch if Greater Than or Equal BGE
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BGE as, at, label

Description

BGE branches if address register as is two’s complement greater than or equal to ad-
dress register at.

The target instruction address of the branch is given by the address of the BGE instruc-
tion, plus the sign-extended 8-bit imm8 field of the instruction plus four. If the address 
register as is less than address register at, execution continues with the next sequen-
tial instruction.

The inverse of BGE is BLT.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BGE) disables this 
feature and forces the assembler to generate an error in this case.

Operation

if AR[s] ≥ AR[t] then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 1 0 1 0 s t 0 1 1 1

8 4 4 4 4
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BGEI Branch if Greater Than or Equal Immediate
Instruction Word (BRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BGEI as, imm, label

Description

BGEI branches if address register as is two’s complement greater than or equal to the 
constant encoded in the r field. The constant values encoded in the r field are not sim-
ply 0..15. For the constant values that can be encoded by r, see Table 3–17 on page 41.

The target instruction address of the branch is given by the address of the BGEI instruc-
tion, plus the sign-extended 8-bit imm8 field of the instruction plus four. If the address 
register as is less than the constant, execution continues with the next sequential 
instruction.

The inverse of BGEI is BLTI.

Assembler Note

The assembler may convert BGEI instructions to BGEZ when given an immediate oper-
and that evaluates to zero. The assembler will substitute an equivalent sequence of in-
structions when the label is out of range. Prefixing the instruction mnemonic with an un-
derscore (_BGEI) disables these features and forces the assembler to generate an error 
instead.

Operation

if AR[s] ≥ B4CONST(r) then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 6 5 4 3 0

imm8 r s 1 1 1 0 0 1 1 0

8 4 4 2 2 4
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Branch if Greater Than or Equal Unsigned BGEU
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BGEU as, at, label

Description

BGEU branches if address register as is unsigned greater than or equal to address reg-
ister at.

The target instruction address of the branch is given by the address of the BGEU instruc-
tion, plus the sign-extended 8-bit imm8 field of the instruction plus four. If the address 
register as is unsigned less than address register at, execution continues with the next 
sequential instruction.

The inverse of BGEU is BLTU.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BGEU) disables 
this feature and forces the assembler to generate an error in this case.

Operation

if (0||AR[s]) ≥ (0||AR[t]) then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 1 0 1 1 s t 0 1 1 1

8 4 4 4 4
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BGEUI Branch if Greater Than or Eq Unsigned Imm
Instruction Word (BRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BGEUI as, imm, label

Description

BGEUI branches if address register as is unsigned greater than or equal to the constant 
encoded in the r field. The constant values encoded in the r field are not simply 0..15. 
For the constant values that can be encoded by r, see Table 3–18 on page 42.

The target instruction address of the branch is given by the address of the BGEUI in-
struction plus the sign-extended 8-bit imm8 field of the instruction plus four. If the ad-
dress register as is less than the constant, execution continues with the next sequential 
instruction.

The inverse of BGEUI is BLTUI.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BGEUI) disables 
this feature and forces the assembler to generate an error in this case.

Operation

if (0||AR[s]) ≥ (0||B4CONSTU(r)) then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 6 5 4 3 0

imm8 r s 1 1 1 1 0 1 1 0

8 4 4 2 2 4
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Branch if Greater Than or Equal to Zero BGEZ
Instruction Word (BRI12)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BGEZ as, label

Description

BGEZ branches if address register as is greater than or equal to zero (the most signifi-
cant bit is clear). BGEZ provides 12 bits of target range instead of the eight bits available 
in most conditional branches.

The target instruction address of the branch is given by the address of the BGEZ instruc-
tion plus the sign-extended 12-bit imm12 field of the instruction plus four. If register as is 
less than zero, execution continues with the next sequential instruction.

The inverse of BGEZ is BLTZ.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BGEZ) disables 
this feature and forces the assembler to generate an error in this case.

Operation

if AR[s]31 = 0 then
nextPC ← PC + (imm121120||imm12) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 12 11 8 7 6 5 4 3 0

imm12 s 1 1 0 1 0 1 1 0

12 4 2 2 4
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BLT Branch if Less Than
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BLT as, at, label

Description

BLT branches if address register as is two’s complement less than address register at.

The target instruction address of the branch is given by the address of the BLT instruc-
tion plus the sign-extended 8-bit imm8 field of the instruction plus four. If the address 
register as is greater than or equal to address register at, execution continues with the 
next sequential instruction.

The inverse of BLT is BGE.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BLT) disables this 
feature and forces the assembler to generate an error in this case.

Operation

if AR[s] < AR[t] then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 0 0 1 0 s t 0 1 1 1

8 4 4 4 4
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Branch if Less Than Immediate BLTI
Instruction Word (BRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BLTI as, imm, label

Description

BLTI branches if address register as is two’s complement less than the constant encod-
ed in the r field. The constant values encoded in the r field are not simply 0..15. For the 
constant values that can be encoded by r, see Table 3–17 on page 41.

The target instruction address of the branch is given by the address of the BLTI instruc-
tion plus the sign-extended 8-bit imm8 field of the instruction plus four. If the address 
register as is greater than or equal to the constant, execution continues with the next 
sequential instruction.

The inverse of BLTI is BGEI.

Assembler Note

The assembler may convert BLTI instructions to BLTZ when given an immediate oper-
and that evaluates to zero. The assembler will substitute an equivalent sequence of in-
structions when the label is out of range. Prefixing the instruction mnemonic with an un-
derscore (_BLTI) disables these features and forces the assembler to generate an error 
instead.

Operation

if AR[s] < B4CONST(r) then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 6 5 4 3 0

imm8 r s 1 0 1 0 0 1 1 0

8 4 4 2 2 4
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BLTU Branch if Less Than Unsigned
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BLTU as, at, label

Description

BLTU branches if address register as is unsigned less than address register at.

The target instruction address of the branch is given by the address of the BLTU instruc-
tion, plus the sign-extended 8-bit imm8 field of the instruction plus four. If the address 
register as is greater than or equal to address register at, execution continues with the 
next sequential instruction.

The inverse of BLTU is BGEU.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BLTU) disables 
this feature and forces the assembler to generate an error in this case.

Operation

if (0||AR[s]) < (0||AR[t]) then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 0 0 1 1 s t 0 1 1 1

8 4 4 4 4
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Branch if Less Than Unsigned Immediate BLTUI
Instruction Word (BRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BLTUI as, imm, label

Description

BLTUI branches if address register as is unsigned less than the constant encoded in 
the r field. The constant values encoded in the r field are not simply 0..15. For the 
constant values that can be encoded by r, see Table 3–18 on page 42.

The target instruction address of the branch is given by the address of the BLTUI in-
struction, plus the sign-extended 8-bit imm8 field of the instruction plus four. If the ad-
dress register as is greater than or equal to the constant, execution continues with the 
next sequential instruction.

The inverse of BLTUI is BGEUI.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BLTUI) disables 
this feature and forces the assembler to generate an error in this case.

Operation

if (0||AR[s]) < (0||B4CONSTU(r)) then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 6 5 4 3 0

imm8 r s 1 0 1 1 0 1 1 0

8 4 4 2 2 4
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BLTZ Branch if Less Than Zero
Instruction Word (BRI12)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BLTZ as, label

Description

BLTZ branches if address register as is less than zero (the most significant bit is set). 
BLTZ provides 12 bits of target range instead of the eight bits available in most condi-
tional branches.

The target instruction address of the branch is given by the address of the BLTZ instruc-
tion, plus the sign-extended 12-bit imm12 field of the instruction plus four. If register as 
is greater than or equal to zero, execution continues with the next sequential instruction.

The inverse of BLTZ is BGEZ.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BLTZ) disables 
this feature and forces the assembler to generate an error in this case.

Operation

if AR[s]31 ≠ 0 then
nextPC ← PC + (imm121120||imm12) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 12 11 8 7 6 5 4 3 0

imm12 s 1 0 0 1 0 1 1 0

12 4 2 2 4
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Branch if Not-All Bits Set BNALL
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BNALL as, at, label

Description

BNALL branches if any of the bits specified by the mask in address register at are clear 
in address register as (that is, if they are not all set). The test is performed by taking the 
bitwise logical and of at with the complement of as and testing if the result is non-zero.

The target instruction address of the branch is given by the address of the BNALL in-
struction, plus the sign-extended 8-bit imm8 field of the instruction plus four. If all of the 
masked bits are set, execution continues with the next sequential instruction.

The inverse of BNALL is BALL.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BNALL) disables 
this feature and forces the assembler to generate an error in this case.

Operation

if ((not AR[s]) and AR[t]) ≠ 032 then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 1 1 0 0 s t 0 1 1 1

8 4 4 4 4
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BNE Branch if Not Equal
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BNE as, at, label

Description

BNE branches if address registers as and at are not equal.

The target instruction address of the branch is given by the address of the BNE instruc-
tion, plus the sign-extended 8-bit imm8 field of the instruction plus four. If the registers 
are equal, execution continues with the next sequential instruction.

The inverse of BNE is BEQ.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BNE) disables this 
feature and forces the assembler to generate an error in this case.

Operation

if AR[s] ≠ AR[t] then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 1 0 0 1 s t 0 1 1 1

8 4 4 4 4
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Branch if Not Equal Immediate BNEI
Instruction Word (BRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BNEI as, imm, label

Description

BNEI branches if address register as and a constant encoded in the r field are not 
equal. The constant values encoded in the r field are not simply 0..15. For the constant 
values that can be encoded by r, see Table 3–17 on page 41.

The target instruction address of the branch is given by the address of the BNEI instruc-
tion, plus the sign-extended 8-bit imm8 field of the instruction plus four. If the register is 
equal to the constant, execution continues with the next sequential instruction.

The inverse of BNEI is BEQI.

Assembler Note

The assembler may convert BNEI instructions to BNEZ or BNEZ.N when given an imme-
diate operand that evaluates to zero. The assembler will substitute an equivalent se-
quence of instructions when the label is out of range. Prefixing the instruction mnemonic 
with an underscore (_BNEI) disables these features and forces the assembler to gener-
ate an error instead.

Operation

if AR[s] ≠ B4CONST(r) then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 6 5 4 3 0

imm8 r s 0 1 1 0 0 1 1 0

8 4 4 2 2 4
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BNEZ Branch if Not-Equal to Zero
Instruction Word (BRI12)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BNEZ as, label

Description

BNEZ branches if address register as is not equal to zero. BNEZ provides 12 bits of tar-
get range instead of the eight bits available in most conditional branches.

The target instruction address of the branch is given by the address of the BNEZ instruc-
tion, plus the sign-extended 12-bit imm12 field of the instruction plus four. If register as 
is equal to zero, execution continues with the next sequential instruction.

The inverse of BNEZ is BEQZ.

Assembler Note

The assembler may convert BNEZ instructions to BNEZ.N when the Code Density 
Option is enabled and the branch target is reachable with the shorter instruction. The 
assembler will substitute an equivalent sequence of instructions when the label is out of 
range. Prefixing the instruction mnemonic with an underscore (_BNEZ) disables these 
features and forces the assembler to generate the BNEZ form of the instruction and an 
error when the label is out of range.

Operation

if AR[s] ≠ 032 then
nextPC ← PC + (imm121120||imm12) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 12 11 8 7 6 5 4 3 0

imm12 s 0 1 0 1 0 1 1 0

12 4 2 2 4
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Narrow Branch if Not Equal Zero BNEZ.N
Instruction Word (RI6)

Required Configuration Option

Code Density Option (See Section 4.3.1 on page 53))

Assembler Syntax

BNEZ.N as, label

Description

This performs the same operation as the BNEZ instruction in a 16-bit encoding. BNEZ.N 
branches if address register as is not equal to zero. BNEZ.N provides six bits of target 
range instead of the 12 bits available in BNEZ.

The target instruction address of the branch is given by the address of the BNEZ.N in-
struction, plus the zero-extended 6-bit imm6 field of the instruction plus four. Because 
the offset is unsigned, this instruction can only be used to branch forward. If register as 
is equal to zero, execution continues with the next sequential instruction.

The inverse of BNEZ.N is BEQZ.N.

Assembler Note

The assembler may convert BNEZ.N instructions to BNEZ. The assembler will substitute 
an equivalent sequence of instructions when the label is out of range. Prefixing the in-
struction mnemonic with an underscore (_BNEZ.N) disables these features and forces 
the assembler to generate the narrow form of the instruction and an error when the label 
is out of range.

Operation

if AR[s] ≠ 032 then
nextPC ← PC + (026||imm6) + 4

endif

Exceptions

EveryInstR Group (see page 244)

15 12 11 8 7 4 3 0

imm63..0 s 1 1 imm65..4 1 1 0 0

4 4 4 4
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BNONE Branch if No Bit Set
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

BNONE as, at, label

Description

BNONE branches if all of the bits specified by the mask in address register at are clear in 
address register as (that is, if none of them are set). The test is performed by taking the 
bitwise logical and of as with at and testing if the result is zero.

The target instruction address of the branch is given by the address of the BNONE in-
struction, plus the sign-extended 8-bit imm8 field of the instruction plus four. If any of the 
masked bits are set, execution continues with the next sequential instruction.

The inverse of BNONE is BANY.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BNONE) disables 
this feature and forces the assembler to generate an error in this case.

Operation

if (AR[s] and AR[t]) = 032 then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInstR Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 0 0 0 0 s t 0 1 1 1

8 4 4 4 4
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Breakpoint BREAK
Instruction Word (RRR)

Required Configuration Option

Debug Option (See Section 4.7.6 on page 197)

Assembler Syntax

BREAK 0..15, 0..15

Description

This instruction simply raises an exception when it is executed and PS.INTLEVEL < 
DEBUGLEVEL. The high-priority vector for DEBUGLEVEL is used. The DEBUGCAUSE reg-
ister is written as part of raising the exception to indicate that BREAK raised the debug 
exception. The address of the BREAK instruction is stored in EPC[DEBUGLEVEL]. The s 
and t fields of the instruction word are not used by the processor; they are available for 
use by the software. When PS.INTLEVEL ≥ DEBUGLEVEL, BREAK is a no-op.

The BREAK instruction typically calls a debugger when program execution reaches a 
certain point (a “breakpoint”). The instruction at the breakpoint is replaced with the 
BREAK instruction. To continue execution after a breakpoint is reached, the debugger 
must re-write the BREAK to the original instruction, single-step by one instruction, and 
then put back the BREAK instruction again.

Writing instructions requires special consideration. See the ISYNC instruction for more 
information.

When it is not possible to write the instruction memory (for example, for ROM code), the 
IBREAKA feature provides breakpoint capabilities (see Debug Option).

Software can also use BREAK to indicate an error condition that requires the program-
mer’s attention. The s and t fields may encode information about the situation.

BREAK is a 24-bit instruction. The BREAK.N density-option instruction performs a similar 
operation in a 16-bit encoding.

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 1 0 0 s t 0 0 0 0

4 4 4 4 4 4
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BREAK Breakpoint
Assembler Note

The assembler may convert BREAK instructions to BREAK.N when the Code Density 
Option is enabled and the second imm is zero. Prefixing the instruction mnemonic with 
an underscore (_BREAK) disables this optimization and forces the assembler to gener-
ate the wide form of the instruction.

Operation

if PS.INTLEVEL < DEBUGLEVEL then
EPC[DEBUGLEVEL] ← PC
EPS[DEBUGLEVEL] ← PS
DEBUGCAUSE ← 001000
nextPC ← InterruptVector[DEBUGLEVEL]
PS.EXCM ← 1
PS.INTLEVEL ← DEBUGLEVEL

endif

Exceptions

EveryInst Group (see page 244)
DebugExcep(BREAK) if Debug Option
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Narrow Breakpoint BREAK.N
Instruction Word (RRRN)

Required Configuration Option

Debug Option (See Section 4.7.6 on page 197) and Code Density Option (See 
Section 4.3.1 on page 53)

Assembler Syntax

BREAK.N 0..15

Description

BREAK.N is similar in operation to BREAK (page 293), except that it is encoded in a  
16-bit format instead of 24 bits, there is only a 4-bit imm field, and a different bit is set in 
DEBUGCAUSE. Use this instruction to set breakpoints on 16-bit instructions.

Assembler Note

The assembler may convert BREAK.N instructions to BREAK. Prefixing the BREAK.N 
instruction with an underscore (_BREAK.N) disables this optimization and forces the 
assembler to generate the narrow form of the instruction.

Operation

if PS.INTLEVEL < DEBUGLEVEL then
EPC[DEBUGLEVEL] ← PC
EPS[DEBUGLEVEL] ← PS
DEBUGCAUSE ← 010000
nextPC ← InterruptVector[DEBUGLEVEL]
PS.EXCM ← 1
PS.INTLEVEL ← DEBUGLEVEL

endif

Exceptions

EveryInst Group (see page 244)
DebugExcep(BREAK.N) if Debug Option

15 12 11 8 7 4 3 0

1 1 1 1 s 0 0 1 0 1 1 0 1

4 4 4 4
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BT Branch if True
Instruction Word (RRI8)

Required Configuration Option

Boolean Option (See Section 4.3.10 on page 65)s

Assembler Syntax

BT bs, label

Description

BT branches to the target address if Boolean register bs is true.

The target instruction address of the branch is given by the address of the BT instruc-
tion, plus the sign-extended 8-bit imm8 field of the instruction plus four. If the Boolean 
register bs is false, execution continues with the next sequential instruction.

The inverse of BT is BF.

Assembler Note

The assembler will substitute an equivalent sequence of instructions when the label is 
out of range. Prefixing the instruction mnemonic with an underscore (_BT) disables this 
feature and forces the assembler to generate an error when the label is out of range.

Operation

if BRs then
nextPC ← PC + (imm8724||imm8) + 4

endif

Exceptions

EveryInst Group (see page 244)

23 16 15 12 11 8 7 4 3 0

imm8 0 0 0 1 s 0 1 1 1 0 1 1 0

8 4 4 4 4
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Non-windowed Call CALL0
Instruction Word (CALL)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

CALL0 label

Description

CALL0 calls subroutines without using register windows. The return address is placed in 
a0, and the processor then branches to the target address. The return address is the 
address of the CALL0 instruction plus three.

The target instruction address must be 32-bit aligned. This allows CALL0 to have a larg-
er effective range (-524284 to 524288 bytes). The target instruction address of the call is 
given by the address of the CALL0 instruction with the least significant two bits set to 
zero plus the sign-extended 18-bit offset field of the instruction shifted by two, plus 
four.

The RET and RET.N instructions are used to return from a subroutine called by CALL0.

See the CALLX0 instruction (page 304) for calling routines where the target address is 
given by the contents of a register.

To call using the register window mechanism, see the CALL4, CALL8, and CALL12 in-
structions.

Operation

AR[0] ← PC + 3
nextPC ← (PC31..2 + (offset1712||offset) + 1)||00

Exceptions

EveryInst Group (see page 244)

23 6 5 4 3 0

offset 0 0 0 1 0 1

18 2 4
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CALL4 Call PC-relative, Rotate Window by 4
Instruction Word (CALL)

Required Configuration Option

Windowed Register Option (See Section 4.7.1 on page 180)

Assembler Syntax

CALL4 label

Description

CALL4 calls subroutines using the register windows mechanism, requesting the callee 
rotate the window by four registers. The CALL4 instruction does not rotate the window it-
self, but instead stores the window increment for later use by the ENTRY instruction. The 
return address and window increment are placed in the caller’s a4 (the callee’s a0), and 
the processor then branches to the target address. The return address is the address of 
the next instruction (the address of the CALL4 instruction plus three). The window incre-
ment is also stored in the CALLINC field of the PS register, where it is accessed by the 
ENTRY instruction.

The target instruction address must be a 32-bit aligned ENTRY instruction. This allows 
CALL4 to have a larger effective range (−524284 to 524288 bytes). The target instruc-
tion address of the call is given by the address of the CALL4 instruction with the two 
least significant bits set to zero plus the sign-extended 18-bit offset field of the instruc-
tion shifted by two, plus four.

See the CALLX4 instruction for calling routines where the target address is given by the 
contents of a register.

Use the RETW and RETW.N instructions to return from a subroutine called by CALL4.

The window increment stored with the return address register in a4 occupies the two 
most significant bits of the register, and therefore those bits must be filled in by the sub-
routine return. The RETW and RETW.N instructions fill in these bits from the two most sig-
nificant bits of their own address. This prevents register-window calls from being used to 
call a routine in a different 1GB region of the address space.

23 6 5 4 3 0

offset 0 1 0 1 0 1

18 2 4
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Call PC-relative, Rotate Window by 4 CALL4
See the CALL0 instruction for calling routines using the non-windowed subroutine proto-
col.

The caller’s a4..a15 are the same registers as the callee’s a0..a11 after the callee 
executes the ENTRY instruction. You can use these registers for parameter passing. The 
caller’s a0..a3 are hidden by CALL4, and therefore you can use them to keep values 
that are live across the call.

Operation

WindowCheck (00, 00, 01)
PS.CALLINC ← 01
AR[0100] ← 01||(PC + 3)29..0
nextPC ← (PC31..2 + (offset1712||offset) + 1)||00

Exceptions

EveryInstR Group (see page 244)
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CALL8 Call PC-relative, Rotate Window by 8
Instruction Word (CALL)

Required Configuration Option

Windowed Register Option (See Section 4.7.1 on page 180)

Assembler Syntax

CALL8 label

Description

CALL8 calls subroutines using the register windows mechanism, requesting the callee 
rotate the window by eight registers. The CALL8 instruction does not rotate the window 
itself, but instead stores the window increment for later use by the ENTRY instruction. 
The return address and window increment are placed in the caller’s a8 (the callee’s a0), 
and the processor then branches to the target address. The return address is the ad-
dress of the next instruction (the address of the CALL8 instruction plus three). The win-
dow increment is also stored in the CALLINC field of the PS register, where it is access-
ed by the ENTRY instruction.

The target instruction address must be a 32-bit aligned ENTRY instruction. This allows 
CALL8 to have a larger effective range (−524284 to 524288 bytes). The target instruc-
tion address of the call is given by the address of the CALL8 instruction with the two 
least significant bits set to zero, plus the sign-extended 18-bit offset field of the in-
struction shifted by two, plus four.

See the CALLX8 instruction for calling routines where the target address is given by the 
contents of a register.

Use the RETW and RETW.N instructions to return from a subroutine called by CALL8.

The window increment stored with the return address register in a8 occupies the two 
most significant bits of the register, and therefore those bits must be filled in by the sub-
routine return. The RETW and RETW.N instructions fill in these bits from the two most sig-
nificant bits of their own address. This prevents register-window calls from being used to 
call a routine in a different 1GB region of the address space.

23 6 5 4 3 0

offset 1 0 0 1 0 1

18 2 4
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Call PC-relative, Rotate Window by 8 CALL8
See the CALL0 instruction for calling routines using the non-windowed subroutine proto-
col.

The caller’s a8..a15 are the same registers as the callee’s a0..a7 after the callee exe-
cutes the ENTRY instruction. You can use these registers for parameter passing. The 
caller’s a0..a7 are hidden by CALL8, and therefore you may use them to keep values 
that are live across the call.

Operation

WindowCheck (00, 00, 10)
PS.CALLINC ← 10
AR[1000] ← 10||(PC + 3)29..0
nextPC ← (PC31..2 + (offset1712||offset) + 1)||00

Exceptions

EveryInstR Group (see page 244)
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CALL12 Call PC-relative, Rotate Window by 12
Instruction Word (CALL)

Required Configuration Option

Windowed Register Option (See Section 4.7.1 on page 180)

Assembler Syntax

CALL12 label

Description

CALL12 calls subroutines using the register windows mechanism, requesting the callee 
rotate the window by 12 registers. The CALL12 instruction does not rotate the window it-
self, but instead stores the window increment for later use by the ENTRY instruction. The 
return address and window increment are placed in the caller’s a12 (the callee’s a0), 
and the processor then branches to the target address. The return address is the ad-
dress of the next instruction (the address of the CALL12 instruction plus three). The win-
dow increment is also stored in the CALLINC field of the PS register, where it is access-
ed by the ENTRY instruction.

The target instruction address must be a 32-bit aligned ENTRY instruction. This allows 
CALL12 to have a larger effective range (−524284 to 524288 bytes). The target instruc-
tion address of the call is given by the address of the CALL12 instruction with the two 
least significant bits set to zero, plus the sign-extended 18-bit offset field of the in-
struction shifted by two, plus four.

See the CALLX12 instruction for calling routines where the target address is given by 
the contents of a register.

The RETW and RETW.N instructions return from a subroutine called by CALL12.

The window increment stored with the return address register in a12 occupies the two 
most significant bits of the register, and therefore those bits must be filled in by the sub-
routine return. The RETW and RETW.N instructions fill in these bits from the two most sig-
nificant bits of their own address. This prevents register-window calls from being used to 
call a routine in a different 1GB region of the address space.

23 6 5 4 3 0

offset 1 1 0 1 0 1

18 2 4
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Call PC-relative, Rotate Window by 12 CALL12
See the CALL0 instruction for calling routines using the non-windowed subroutine proto-
col.

The caller’s a12..a15 are the same registers as the callee’s a0..a3 after the callee exe-
cutes the ENTRY instruction. You can use these registers for parameter passing. The 
caller’s a0..a11 are hidden by CALL12, and therefore you may use them to keep values 
that are live across the call.

Operation

WindowCheck (00, 00, 11)
PS.CALLINC ← 11
AR[1100] ← 11||(PC + 3)29..0
nextPC ← (PC31..2 + (offset1712||offset) + 1)||00

Exceptions

EveryInstR Group (see page 244)
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CALLX0 Non-windowed Call Register
Instruction Word (CALLX)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

CALLX0 as

Description

CALLX0 calls subroutines without using register windows. The return address is placed 
in a0, and the processor then branches to the target address. The return address is the 
address of the CALLX0 instruction, plus three.

The target instruction address of the call is given by the contents of address register as.

The RET and RET.N instructions return from a subroutine called by CALLX0.

To call using the register window mechanism, see the CALLX4, CALLX8, and CALLX12 
instructions.

Operation

nextPC ← AR[s]
AR[0] ← PC + 3

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 6 5 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 s 1 1 0 0 0 0 0 0

4 4 4 4 2 2 4
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Call Register, Rotate Window by 4 CALLX4
Instruction Word (CALLX)

Required Configuration Option

Windowed Register Option (See Section 4.7.1 on page 180)

Assembler Syntax

CALLX4 as

Description

CALLX4 calls subroutines using the register windows mechanism, requesting the callee 
rotate the window by four registers. The CALLX4 instruction does not rotate the window 
itself, but instead stores the window increment for later use by the ENTRY instruction. 
The return address and window increment are placed in the caller’s a4 (the callee’s a0), 
and the processor then branches to the target address. The return address is the ad-
dress of the next instruction (the address of the CALLX4 instruction plus three). The win-
dow increment is also stored in the CALLINC field of the PS register, where it is access-
ed by the ENTRY instruction.

The target instruction address of the call is given by the contents of address register as. 
The target instruction must be an ENTRY instruction.

See the CALL4 instruction for calling routines where the target address is given by a PC-
relative offset in the instruction.

The RETW and RETW.N instructions return from a subroutine called by CALLX4.

The window increment stored with the return address register in a4 occupies the two 
most significant bits of the register, and therefore those bits must be filled in by the sub-
routine return. The RETW and RETW.N instructions fill in these bits from the two most sig-
nificant bits of their own address. This prevents register-window calls from being used to 
call a routine in a different 1GB region of the address space.

See the CALLX0 instruction for calling routines using the non-windowed subroutine 
protocol.

23 20 19 16 15 12 11 8 7 6 5 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 s 1 1 0 1 0 0 0 0

4 4 4 4 2 2 4
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CALLX4 Call Register, Rotate Window by 4
The caller’s a4..a15 are the same registers as the callee’s a0..a11 after the callee exe-
cutes the ENTRY instruction. You can use these registers for parameter passing. The 
caller’s a0..a3 are hidden by CALLX4, and therefore you may use them to keep values 
that are live across the call.

Operation

WindowCheck (00, 00, 01)
PS.CALLINC ← 01
AR[01||00] ← 01||(PC + 3)29..0
nextPC ← AR[s]

Exceptions

EveryInstR Group (see page 244)
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Call Register, Rotate Window by 8 CALLX8
Instruction Word (CALLX)

Required Configuration Option

Windowed Register Option (See Section 4.7.1 on page 180)

Assembler Syntax

CALLX8 as

Description

CALLX8 calls subroutines using the register windows mechanism, requesting the callee 
rotate the window by eight registers. The CALLX8 instruction does not rotate the window 
itself, but instead stores the window increment for later use by the ENTRY instruction. 
The return address and window increment are placed in the caller’s a8 (the callee’s a0), 
and the processor then branches to the target address. The return address is the ad-
dress of the next instruction (the address of the CALLX8 instruction plus three). The win-
dow increment is also stored in the CALLINC field of the PS register, where it is access-
ed by the ENTRY instruction.

The target instruction address of the call is given by the contents of address register as. 
The target instruction must be an ENTRY instruction.

See the CALL8 instruction for calling routines where the target address is given by a PC-
relative offset in the instruction.

The RETW and RETW.N (page 482) instructions return from a subroutine called by 
CALLX8.

The window increment stored with the return address register in a8 occupies the two 
most significant bits of the register, and therefore those bits must be filled in by the sub-
routine return. The RETW and RETW.N instructions fill in these bits from the two most sig-
nificant bits of their own address. This prevents register-window calls from being used to 
call a routine in a different 1GB region of the address space.

See the CALLX0 instruction for calling routines using the non-windowed subroutine pro-
tocol.

23 20 19 16 15 12 11 8 7 6 5 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 s 1 1 1 0 0 0 0 0

4 4 4 4 2 2 4
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CALLX8 Call Register, Rotate Window by 8
The caller’s a8..a15 are the same registers as the callee’s a0..a7 after the callee exe-
cutes the ENTRY instruction. You can use these registers for parameter passing. The 
caller’s a0..a7 are hidden by CALLX8, and therefore you may use them to keep values 
that are live across the call.

Operation

WindowCheck (00, 00, 10)
PS.CALLINC ← 10
AR[10||00] ← 10||(PC + 3)29..0
nextPC ← AR[s]

Exceptions

EveryInstR Group (see page 244)
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Call Register, Rotate Window by 12 CALLX12
Instruction Word (CALLX)

Required Configuration Option

Windowed Register Option (See Section 4.7.1 on page 180)

Assembler Syntax

CALLX12 as

Description

CALLX12 calls subroutines using the register windows mechanism, requesting the 
callee rotate the window by 12 registers. The CALLX12 instruction does not rotate the 
window itself, but instead stores the window increment for later use by the ENTRY in-
struction. The return address and window increment are placed in the caller’s a12 (the 
callee’s a0), and the processor then branches to the target address. The return address 
is the address of the next instruction (the address of the CALLX12 instruction plus 
three). The window increment is also stored in the CALLINC field of the PS register, 
where it is accessed by the ENTRY instruction.

The target instruction address of the call is given by the contents of address register as. 
The target instruction must be an ENTRY instruction.

See the CALL12 instruction for calling routines where the target address is given by a 
PC-relative offset in the instruction.

The RETW and RETW.N instructions return from a subroutine called by CALLX12.

The window increment stored with the return address register in a12 occupies the two 
most significant bits of the register, and therefore those bits must be filled in by the sub-
routine return. The RETW and RETW.N instructions fill in these bits from the two most sig-
nificant bits of their own address. This prevents register-window calls from being used to 
call a routine in a different 1GB region of the address space. 

See the CALLX0 instruction for calling routines using the non-windowed subroutine 
protocol.

23 20 19 16 15 12 11 8 7 6 5 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 s 1 1 1 1 0 0 0 0

4 4 4 4 2 2 4
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CALLX12 Call Register, Rotate Window by 12
The caller’s a12..a15 are the same registers as the callee’s a0..a3 after the callee exe-
cutes the ENTRY instruction. These registers may be used for parameter passing. The 
caller’s a0..a11 are hidden by CALLX12, and therefore may be used to keep values that 
are live across the call.

Operation

WindowCheck (00, 00, 11)
PS.CALLINC ← 11
AR[11||00] ← 11||(PC + 3)29..0
nextPC ← AR[s]

Exceptions

EveryInstR Group (see page 244)
310 Xtensa Instruction Set Architecture (ISA) Reference Manual



Ceiling Single to Fixed CEIL.S
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

CEIL.S ar, fs, 0..15

Description

CEIL.S converts the contents of floating-point register fs from single-precision to 
signed integer format, rounding toward +∞. The single-precision value is first scaled by a 
power of two constant value encoded in the t field, with 0..15 representing 1.0, 2.0, 4.0, 
…, 32768.0. The scaling allows for a fixed point notation where the binary point is at the 
right end of the integer for t=0 and moves to the left as t increases, until for t=15 there 
are 15 fractional bits represented in the fixed point number. For positive overflow (value 
≥ 32'h7fffffff), positive infinity, or NaN, 32'h7fffffff is returned; for negative 
overflow (value ≤ 32'h80000000) or negative infinity, 32'h80000000 is returned. The 
result is written to address register ar.

Operation

AR[r] ← ceils(FR[s] ×s pows(2.0,t))

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 0 1 1 1 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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CLAMPS Signed Clamp
Instruction Word (RRR)

Required Configuration Option

Miscellaneous Operations Option (See Section 4.3.8 on page 62)

Assembler Syntax

CLAMPS ar, as, 7..22

Description

CLAMPS tests whether the contents of address register as fits as a signed value of 
imm+1 bits (in the range 7 to 22). If so, the value is written to address register ar; if not, 
the largest value of imm+1 bits with the same sign as as is written to ar. Thus CLAMPS 
performs the function

y ← min(max(x, −2imm), 2imm−1)

CLAMPS may be used in conjunction with instructions such as ADD, SUB, MUL16S, and 
so forth to implement saturating arithmetic.

Assembler Note

The immediate values accepted by the assembler are 7 to 22. The assembler encodes 
these in the t field of the instruction using 0 to 15.

Operation

sign ← AR[s]31
AR[r] ← if AR[s]30..t+7 = sign24-t 

then AR[s] 
else sign25-t||(not sign)t+7

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 1 0 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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Data Cache Hit Invalidate DHI
Instruction Word (RRI8)

Required Configuration Option

Data Cache Option (See Section 4.5.5 on page 118)

Assembler Syntax

DHI as, 0..1020

Description

DHI invalidates the specified line in the level-1 data cache, if it is present. If the specified 
address is not in the data cache, then this instruction has no effect. If the specified ad-
dress is present, it is invalidated even if it contains dirty data. If the specified line has 
been locked by a DPFL instruction, then no invalidation is done and no exception is 
raised because of the lock. The line remains in the cache and must be unlocked by a 
DHU or DIU instruction before it can be invalidated. This instruction is useful before a 
DMA write to memory that overwrites the entire line.

DHI forms a virtual address by adding the contents of address register as and an 8-bit 
zero-extended constant value encoded in the instruction word shifted left by two. There-
fore, the offset can specify multiples of four from zero to 1020. If the Region Translation 
Option (page 156) or the MMU Option (page 158) is enabled, the virtual address is 
translated to the physical address. If not, the physical address is identical to the virtual 
address. If the translation encounters an error (for example, protection violation), the 
processor raises an exception (see Section 4.4.1.5 on page 89) as if it were loading 
from the virtual address.

Because the organization of caches is implementation-specific, the operation below 
specifies only a call to the implementation’s dhitinval function.

DHI is a privileged instruction.

23 16 15 12 11 8 7 4 3 0

imm8 0 1 1 1 s 0 1 1 0 0 0 1 0

8 4 4 4 4
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DHI Data Cache Hit Invalidate
Assembler Note

To form a virtual address DHI calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by four.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
vAddr ← AR[s] + (022||imm8||02)
(pAddr, attributes, cause) ← ltranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)

else
dhitinval(vAddr, pAddr)

endif
endif

Exceptions

EveryInstR Group (see page 244)
Memory Group (see page 244)
GenExcep(LoadProhibitedCause) if Region Protection Option or MMU Option
GenExcep(PrivilegedCause) if Exception Option
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Data Cache Hit Unlock DHU
Instruction Word (RRI4)

Required Configuration Option

Data Cache Index Lock Option (See Section 4.5.7 on page 122)

Assembler Syntax

DHU as, 0..240

Description

DHU performs a data cache unlock if hit. The purpose of DHU is to remove the lock creat-
ed by a DPFL instruction. Xtensa ISA implementations that do not implement cache lock-
ing must raise an illegal instruction exception when this opcode is executed.

DHU checks whether the line containing the specified address is present in the data 
cache, and if so, it clears the lock associated with that line. To unlock by index without 
knowing the address of the locked line, use the DIU instruction.

DHU forms a virtual address by adding the contents of address register as and a 4-bit 
zero-extended constant value encoded in the instruction word shifted left by four. There-
fore, the offset can specify multiples of 16 from zero to 240. If the Region Translation 
Option (page 156) or the MMU Option (page 158) is enabled, the virtual address is 
translated to the physical address. If not, the physical address is identical to the virtual 
address. If the translation encounters an error (for example, protection violation), the 
processor raises an exception (see Section 4.4.1.5 on page 89) as if it were loading 
from the virtual address.

DHU is a privileged instruction.

Assembler Note

To form a virtual address DHU calculates the sum of address register as and the imm4 
field of the instruction word times 16. Therefore, the machine-code offset is in terms of 
16 byte units. However, the assembler expects a byte offset and encodes this into the 
instruction by dividing by 16.

23 20 19 16 15 12 11 8 7 4 3 0

imm4 0 0 1 0 0 1 1 1 s 1 0 0 0 0 0 1 0

4 4 4 4 4 4
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DHU Data Cache Hit Unlock
Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
vAddr ← AR[s] + (024||imm4||04)
(pAddr, attributes, cause) ← ltranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)

else
dhitunlock(vAddr, pAddr)

endif
endif

Exceptions

EveryInstR Group (see page 244)
Memory Group (see page 244)
GenExcep(LoadProhibitedCause) if Region Protection Option or MMU Option
GenExcep(PrivilegedCause) if Exception Option
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Data Cache Hit Writeback DHWB
Instruction Word (RRI8)

Required Configuration Option

Data Cache Option (See Section 4.5.5 on page 118)

Assembler Syntax

DHWB as, 0..1020

Description

This instruction forces dirty data in the data cache to be written back to memory. If the 
specified address is not in the data cache or is present but unmodified, then this instruc-
tion has no effect. If the specified address is present and modified in the data cache, the 
line containing it is written back, and marked unmodified. This instruction is useful be-
fore a DMA read from memory, to force writes to a frame buffer to become visible, or to 
force writes to memory shared by two processors.

DHWB forms a virtual address by adding the contents of address register as and an 8-bit 
zero-extended constant value encoded in the instruction word shifted left by two. There-
fore, the offset can specify multiples of four from zero to 1020. If the Region Translation 
Option (page 156) or the MMU Option (page 158) is enabled, the virtual address is 
translated to the physical address. If not, the physical address is identical to the virtual 
address. If the translation encounters an error (for example, protection violation), the 
processor raises an exception (see Section 4.4.1.5 on page 89) as if it were loading 
from the virtual address.

Because the organization of caches is implementation-specific, the operation below 
specifies only a call to the implementation’s dhitwriteback function.

Assembler Note

To form a virtual address DHWB calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by four.

23 16 15 12 11 8 7 4 3 0

imm8 0 1 1 1 s 0 1 0 0 0 0 1 0

8 4 4 4 4
Xtensa Instruction Set Architecture (ISA) Reference Manual 317



DHWB Data Cache Hit Writeback
Operation

vAddr ← AR[s] + (022||imm8||02)
(pAddr, attributes, cause) ← ltranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)

else
dhitwriteback(vAddr, pAddr)

endif

Exceptions

EveryInstR Group (see page 244)
Memory Group (see page 244)
GenExcep(LoadProhibitedCause) if Region Protection Option or MMU Option

Implementation Notes

Some Xtensa ISA implementations do not support write-back caches. For these imple-
mentations, the DHWB instruction performs no operation.
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Data Cache Hit Writeback Invalidate DHWBI
Instruction Word (RRI8)

Required Configuration Option

Data Cache Option (See Section 4.5.5 on page 118)

Assembler Syntax

DHWBI as, 0..1020

Description

DHWBI forces dirty data in the data cache to be written back to memory. If the specified 
address is not in the data cache, then this instruction has no effect. If the specified ad-
dress is present and modified in the data cache, the line containing it is written back. 
After the write-back, if any, the line containing the specified address is invalidated if 
present. If the specified line has been locked by a DPFL instruction, then no invalidation 
is done and no exception is raised because of the lock. The line is written back but re-
mains in the cache unmodified and must be unlocked by a DHU or DIU instruction before 
it can be invalidated. This instruction is useful in the same circumstances as DHWB and 
before a DMA write to memory or write from another processor to memory. If the line is 
certain to be completely overwritten by the write, you can use a DHI (as it is faster), but 
otherwise use a DHWBI.

DHWBI forms a virtual address by adding the contents of address register as and an  
8-bit zero-extended constant value encoded in the instruction word shifted left by two. 
Therefore, the offset can specify multiples of four from zero to 1020. If the Region Trans-
lation Option (page 156) or the MMU Option (page 158) is enabled, the virtual address is 
translated to the physical address. If not, the physical address is identical to the virtual 
address. If the translation encounters an error (for example, protection violation), the 
processor raises an exception (see Section 4.4.1.5 on page 89) as if it were loading 
from the virtual address.

Because the organization of caches is implementation-specific, the operation section 
below specifies only a call to the implementation’s dhitwritebackinval function.

23 16 15 12 11 8 7 4 3 0

imm8 0 1 1 1 s 0 1 0 1 0 0 1 0

8 4 4 4 4
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DHWBI Data Cache Hit Writeback Invalidate
Assembler Note

To form a virtual address, DHWBI calculates the sum of address register as and the 
imm8 field of the instruction word times four. Therefore, the machine-code offset is in 
terms of 32-bit (4 byte) units. However, the assembler expects a byte offset and encodes 
this into the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)
(pAddr, attributes, cause) ← ltranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)

else
dhitwritebackinval(vAddr, pAddr)

endif

Exceptions

EveryInstR Group (see page 244)
Memory Group (see page 244)
GenExcep(LoadProhibitedCause) if Region Protection Option or MMU Option

Implementation Notes

Some Xtensa ISA implementations do not support write-back caches. For these imple-
mentations DHWBI is identical to DHI.
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Data Cache Index Invalidate DII
Instruction Word (RRI8)

Required Configuration Option

Data Cache Option (See Section 4.5.5 on page 118))

Assembler Syntax

DII as, 0..1020

Description

DII uses the virtual address to choose a location in the data cache and invalidates the 
specified line. If the chosen line has been locked by a DPFL instruction, then no invalida-
tion is done and no exception is raised because of the lock. The line remains in the 
cache and must be unlocked by a DHU or DIU instruction before it can be invalidat-
ed.The method for mapping the virtual address to a data cache location is implementa-
tion-specific. This instruction is primarily useful for data cache initialization after power-
up.

DII forms a virtual address by adding the contents of address register as and an 8-bit 
zero-extended constant value encoded in the instruction word shifted left by two. There-
fore, the offset can specify multiples of four from zero to 1020. The virtual address 
chooses a cache line without translation and without raising the associated exceptions.

Because the organization of caches is implementation-specific, the operation section 
below specifies only a call to the implementation’s dindexinval function.

DII is a privileged instruction.

Assembler Note

To form a virtual address, DII calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by four.

Operation

if CRING ≠ 0 then

23 16 15 12 11 8 7 4 3 0

imm8 0 1 1 1 s 0 1 1 1 0 0 1 0

8 4 4 4 4
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DII Data Cache Index Invalidate
Exception (PrivilegedInstructionCause)
else

vAddr ← AR[s] + (022||imm8||02)
dindexinval(vAddr)

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

Implementation Notes

x ← ceil(log2(DataCacheBytes))
y ← log2(DataCacheBytes ÷ DataCacheWayCount)
z ← log2(DataCacheLineBytes)

The cache line specified by index Addrx-1..z in a direct-mapped cache or way  
Addrx-1..y and index Addry-1..z in a set-associative cache is the chosen line. If the 
specified cache way is not valid (the fourth way of a three way cache) the instruction 
does nothing. In some implementations all ways at index Addry-1..z are invalidated 
regardless of the specified way, but for future compatibility this behavior should not be 
assumed.

The additional ways invalidated in some implementations mean that care is needed in 
using this instruction with write-back caches. Dirty data in any way (at the specified in-
dex) of the cache will be lost and not just dirty data in the specified way. Because the in-
struction is primarily used at reset, this will not usually cause any difficulty.
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Data Cache Index Unlock DIU
Instruction Word (RRI4)

Required Configuration Option

Data Cache Index Lock Option (See Section 4.5.7 on page 122)

Assembler Syntax

DIU as, 0..240

Description

DIU uses the virtual address to choose a location in the data cache and unlocks the 
chosen line. The purpose of DIU is to remove the lock created by a DPFL instruction. 
The method for mapping the virtual address to a data cache location is implementation-
specific. This instruction is primarily useful for unlocking the entire data cache. Xtensa 
ISA implementations that do not implement cache locking must raise an illegal instruc-
tion exception when this opcode is executed.

To unlock a specific cache line if it is in the cache, use the DHU instruction.

DII forms a virtual address by adding the contents of address register as and a 4-bit 
zero-extended constant value encoded in the instruction word shifted left by four. There-
fore, the offset can specify multiples of 16 from zero to 240. The virtual address chooses 
a cache line without translation and without raising the associated exceptions.

Because the organization of caches is implementation-specific, the operation section 
below specifies only a call to the implementation’s dindexunlock function.

DIU is a privileged instruction.

Assembler Note

To form a virtual address DIU calculates the sum of address register as and the imm4 
field of the instruction word times 16. Therefore, the machine-code offset is in terms of 
16 byte units. However, the assembler expects a byte offset and encodes this into the 
instruction by dividing by 16.

23 20 19 16 15 12 11 8 7 4 3 0

imm4 0 0 1 1 0 1 1 1 s 1 0 0 0 0 0 1 0

4 4 4 4 4 4
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DIU Data Cache Index Unlock
Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
vAddr ← AR[s] + (024||imm4||04)
dindexunlock(vAddr)

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option
MemoryErrorException if Memory ECC/Parity Option

Implementation Notes

x ← ceil(log2(DataCacheBytes))
y ← log2(DataCacheBytes ÷ DataCacheWayCount)
z ← log2(DataCacheLineBytes)

The cache line specified by index Addrx-1..z in a direct-mapped cache or way  
Addrx-1..y and index Addry-1..z in a set-associative cache is the chosen line. If the 
specified cache way is not valid (the fourth way of a three way cache), the instruction 
does nothing.
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Data Cache Index Write Back DIWB
Instruction Word (RRI4)

Required Configuration Option

Data Cache Option (See Section 4.5.5 on page 118) (added in T1050)

Assembler Syntax

DIWB as, 0..240

Description

DIWB uses the virtual address to choose a line in the data cache and writes that line 
back to memory if it is dirty. The method for mapping the virtual address to a data cache 
line is implementation-specific. This instruction is primarily useful for forcing all dirty data 
in the cache back to memory. If the chosen line is present but unmodified, then this in-
struction has no effect. If the chosen line is present and modified in the data cache, it is 
written back, and marked unmodified. For set-associative caches, only one line out of 
one way of the cache is written back. Some Xtensa ISA implementations do not support 
writeback caches. For these implementations DIWB does nothing.

This instruction is useful for the same purposes as DHWB, but when either the address is 
not known or when the range of addresses is large enough that it is faster to operate on 
the entire cache.

DIWB forms a virtual address by adding the contents of address register as and a 4-bit 
zero-extended constant value encoded in the instruction word shifted left by four. There-
fore, the offset can specify multiples of 16 from zero to 240. The virtual address chooses 
a cache line without translation and without raising the associated exceptions.

Because the organization of caches is implementation-specific, the operation section 
below specifies only a call to the implementation’s dindexwriteback function.

DIWB is a privileged instruction.

23 20 19 16 15 12 11 8 7 4 3 0

imm4 0 1 0 0 0 1 1 1 s 1 0 0 0 0 0 1 0

4 4 4 4 4 4
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DIWB Data Cache Index Write Back
Assembler Note

To form a virtual address DIWB calculates the sum of address register as and the imm4 
field of the instruction word times 16. Therefore, the machine-code offset is in terms of 
16 byte units. However, the assembler expects a byte offset and encodes this into the in-
struction by dividing by 16.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
vAddr ← AR[s] + (024||imm4||04)
dindexwriteback(vAddr)

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option
MemoryErrorException if Memory ECC/Parity Option

Implementation Notes

x ← ceil(log2(DataCacheBytes))
y ← log2(DataCacheBytes ÷ DataCacheWayCount)
z ← log2(DataCacheLineBytes)

The cache line specified by index Addrx-1..z in a direct-mapped cache or way  
Addrx-1..y and index Addry-1..z in a set-associative cache is the chosen line. If the 
specified cache way is not valid (the fourth way of a three way cache), the instruction 
does nothing.

Some Xtensa ISA implementations do not support write-back caches. For these imple-
mentations, the DIWB instruction has no effect.
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Data Cache Index Write Back Invalidate DIWBI
Instruction Word  (RRI4)

Required Configuration Option

Data Cache Option (See Section 4.5.5 on page 118) (added in T1050)

Assembler Syntax

DIWBI as, 0..240

Description

DIWBI uses the virtual address to choose a line in the data cache and forces that line to 
be written back to memory if it is dirty. After the writeback, if any, the line is invalidated. 
The method for mapping the virtual address to a data cache location is implementation-
specific. If the chosen line is already invalid, then this instruction has no effect. If the 
chosen line has been locked by a DPFL instruction, then dirty data is written back but no 
invalidation is done and no exception is raised because of the lock. The line remains in 
the cache and must be unlocked by a DHU or DIU instruction before it can be invalidat-
ed. For set-associative caches, only one line out of one way of the cache is written back 
and invalidated. Some Xtensa ISA implementations do not support write-back caches. 
For these implementations DIWBI is similar to DII but invalidates only one line.

This instruction is useful for the same purposes as the DHWBI but when either the ad-
dress is not known, or when the range of addresses is large enough that it is faster to 
operate on the entire cache.

DIWBI forms a virtual address by adding the contents of address register as and a 4-bit 
zero-extended constant value encoded in the instruction word shifted left by four. There-
fore, the offset can specify multiples of 16 from zero to 240. The virtual address chooses 
a cache line without translation and without raising the associated exceptions.

Because the organization of caches is implementation-specific, the operation section 
below specifies only a call to the implementation’s dindexwritebackinval function.

DIWBI is a privileged instruction.

23 20 19 16 15 12 11 8 7 4 3 0

imm4 0 1 0 1 0 1 1 1 s 1 0 0 0 0 0 1 0

4 4 4 4 4 4
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DIWBI Data Cache Index Write Back Invalidate
Assembler Note

To form a virtual address, DIWBI calculates the sum of address register as and the 
imm4 field of the instruction word times 16. Therefore, the machine-code offset is in 
terms of 16 byte units. However, the assembler expects a byte offset and encodes this 
into the instruction by dividing by 16.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
vAddr ← AR[s] + (024||imm4||04)
dindexwritebackinval(vAddr)

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option
MemoryErrorException if Memory ECC/Parity Option

Implementation Notes

x ← ceil(log2(DataCacheBytes))
y ← log2(DataCacheBytes ÷ DataCacheWayCount)
z ← log2(DataCacheLineBytes)

The cache line specified by index Addrx-1..z in a direct-mapped cache or way  
Addrx-1..y and index Addry-1..z in a set-associative cache is the chosen line. If the 
specified cache way is not valid (the fourth way of a three way cache), the instruction 
does nothing.
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Data Cache Prefetch and Lock DPFL
Instruction Word (RRI4)

Required Configuration Option

Data Cache Index Lock Option (See Section 4.5.7 on page 122)

Assembler Syntax

DPFL as, 0..240

Description

DPFL performs a data cache prefetch and lock. The purpose of DPFL is to improve per-
formance, and not to affect state defined by the ISA. Xtensa ISA implementations that 
do not implement cache locking must raise an illegal instruction exception when this op-
code is executed. In general, the performance improvement from using this instruction is 
implementation-dependent.

DPFL checks if the line containing the specified address is present in the data cache, 
and if not, it begins the transfer of the line from memory to the cache. The line is placed 
in the data cache and the line marked as locked, that is not replaceable by ordinary data 
cache misses. To unlock the line, use DHU or DIU. To prefetch without locking, use the 
DPFR, DPFW, DPFRO, or DPFWO instructions.

DPFL forms a virtual address by adding the contents of address register as and a 4-bit 
zero-extended constant value encoded in the instruction word shifted left by four. There-
fore, the offset can specify multiples of 16 from zero to 240. If the Region Translation 
Option (page 156) or the MMU Option (page 158) is enabled, the virtual address is 
translated to the physical address. If not, the physical address is identical to the virtual 
address. If the translation encounters an error (for example, protection violation), the 
processor raises one of several exceptions (see Section 4.4.1.5 on page 89).

Because the organization of caches is implementation-specific, the operation section 
below specifies only a call to the implementation’s dprefetch function.

DPFL is a privileged instruction.

23 20 19 16 15 12 11 8 7 4 3 0

imm4 0 0 0 0 0 1 1 1 s 1 0 0 0 0 0 1 0

24 4 4 4 4 4
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DPFL Data Cache Prefetch and Lock
Assembler Note

To form a virtual address, DPFL calculates the sum of address register as and the imm4 
field of the instruction word times 16. Therefore, the machine-code offset is in terms of 
16 byte units. However, the assembler expects a byte offset and encodes this into the 
instruction by dividing by 16.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
vAddr ← AR[s] + (024||imm4||04)
(pAddr, attributes, cause) ← ltranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)

else
dprefetch(vAddr, pAddr, 0, 0, 1)

endif
endif

Exceptions

Memory Group (see page 244)
GenExcep(LoadProhibitedCause) if Region Protection Option or MMU Option
GenExcep(PrivilegedCause) if Exception Option

Implementation Notes

If, before the instruction executes, there are not two available DataCache ways at the re-
quired index, a Load Store Error exception is raised.
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Data Cache Prefetch for Read DPFR
Instruction Word (RRI8)

Required Configuration Option

Data Cache Option (See Section 4.5.5 on page 118)

Assembler Syntax

DPFR as, 0..1020

Description

DPFR performs a data cache prefetch for read. The purpose of DPFR is to improve per-
formance, but not to affect state defined by the ISA. Therefore, some Xtensa ISA imple-
mentations may choose to implement this instruction as a simple “no-operation” instruc-
tion. In general, the performance improvement from using this instruction is 
implementation-dependent.

In some Xtensa ISA implementations, DPFR checks whether the line containing the 
specified address is present in the data cache, and if not, it begins the transfer of the 
line from memory. The four data prefetch instructions provide different “hints” about how 
the data is likely to be used in the future. DPFR indicates that the data is only likely to be 
read, possibly more than once, before it is replaced by another line in the cache.

DPFR forms a virtual address by adding the contents of address register as and an 8-bit 
zero-extended constant value encoded in the instruction word shifted left by two. There-
fore, the offset can specify multiples of four from zero to 1020. If the Region Translation 
Option (page 156) or the MMU Option (page 158) is enabled, the virtual address is 
translated to the physical address. If not, the physical address is identical to the virtual 
address. If the translation or memory reference encounters an error (for example, pro-
tection violation or non-existent memory), the processor performs no operation. This al-
lows the instruction to be used to speculatively fetch an address that does not exist or is 
protected without either causing an error or allowing inappropriate action.

Because the organization of caches is implementation-specific, the operation section 
below specifies only a call to the implementation’s dprefetch function.

23 16 15 12 11 8 7 4 3 0

imm8 0 1 1 1 s 0 0 0 0 0 0 1 0

8 4 4 4 4
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DPFR Data Cache Prefetch for Read
Assembler Note

To form a virtual address, DPFR calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)
(pAddr, attributes, cause) ← ltranslate(vAddr, CRING)
if not invalid(attributes) then

dprefetch(vAddr, pAddr, 0, 0, 0)
endif

Exceptions

EveryInstR Group (see page 244)
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Data Cache Prefetch for Read Once DPFRO
Instruction Word (RRI8)

Required Configuration Option

Data Cache Option (See Section 4.5.5 on page 118)

Assembler Syntax

DPFRO as, 0..1020

Description

DPFRO performs a data cache prefetch for read once. The purpose of DPFRO is to im-
prove performance, but not to affect state defined by the ISA. Therefore, some Xtensa 
ISA implementations may choose to implement this instruction as a simple “no-opera-
tion” instruction. In general, the performance improvement from using this instruction is 
implementation-dependent.

In some Xtensa ISA implementations, DPFRO checks whether the line containing the 
specified address is present in the data cache, and if not, it begins the transfer of the 
line from memory. Four data prefetch instructions provide different “hints” about how the 
data is likely to be used in the future. DPFRO indicates that the data is only likely to be 
read once before it is replaced by another line in the cache. In some implementations, 
this hint might be used to select a specific cache way or to select a streaming buffer 
instead of the cache.

DPFRO forms a virtual address by adding the contents of address register as and an 8-
bit zero-extended constant value encoded in the instruction word shifted left by two. 
Therefore, the offset can specify multiples of four from zero to 1020. If the Region Trans-
lation Option (page 156) or the MMU Option (page 158) is enabled, the virtual address is 
translated to the physical address. If not, the physical address is identical to the virtual 
address. If the translation or memory reference encounters an error (for example, pro-
tection violation or non-existent memory), the processor performs no operation. This al-
lows the instruction to be used to speculatively fetch an address that does not exist or is 
protected without either causing an error or allowing inappropriate action.

Because the organization of caches is implementation-specific, the operation section 
below specifies only a call to the implementation’s dprefetch function.

23 16 15 12 11 8 7 4 3 0

imm8 0 1 1 1 s 0 0 1 0 0 0 1 0

8 4 4 4 4
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DPFRO Data Cache Prefetch for Read Once
Assembler Note

To form a virtual address, DPFRO calculates the sum of address register as and the 
imm8 field of the instruction word times four. Therefore, the machine-code offset is in 
terms of 32-bit (4 byte) units. However, the assembler expects a byte offset and encodes 
this into the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)
(pAddr, attributes, cause) ← ltranslate(vAddr, CRING)
if not invalid(attributes) then

dprefetch(vAddr, pAddr, 0, 1, 0)
endif

Exceptions

EveryInstR Group (see page 244)
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Data Cache Prefetch for Write DPFW
Instruction Word (RRI8)

Required Configuration Option

Data Cache Option (See Section 4.5.5 on page 118)

Assembler Syntax

DPFW as, 0..1020

Description

DPFW performs a data cache prefetch for write. The purpose of DPFW is to improve per-
formance, but not to affect the ISA state. Therefore, some Xtensa ISA implementations 
may choose to implement this instruction as a simple “no-operation” instruction. In gen-
eral, the performance improvement from using this instruction is implementation-depen-
dent.

In some Xtensa ISA implementations, DPFW checks whether the line containing the 
specified address is present in the data cache, and if not, begins the transfer of the line 
from memory. Four data prefetch instructions provide different “hints” about how the 
data is likely to be used in the future. DPFW indicates that the data is likely to be written 
before it is replaced by another line in the cache. In some implementations, this fetches 
the data with write permission (for example, in a system with shared and exclusive 
states).

DPFW forms a virtual address by adding the contents of address register as and an 8-bit 
zero-extended constant value encoded in the instruction word shifted left by two. There-
fore, the offset can specify multiples of four from zero to 1020. If the Region Translation 
Option (page 156) or the MMU Option (page 158) is enabled, the virtual address is 
translated to the physical address. If not, the physical address is identical to the virtual 
address. If the translation or memory reference encounters an error (for example, pro-
tection violation or non-existent memory), the processor performs no operation. This al-
lows the instruction to be used to speculatively fetch an address that does not exist or is 
protected without either causing an error or allowing inappropriate action.

Because the organization of caches is implementation-specific, the operation section 
below specifies only a call to the implementation’s dprefetch function.

23 16 15 12 11 8 7 4 3 0

imm8 0 1 1 1 s 0 0 0 1 0 0 1 0

8 4 4 4 4
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DPFW Data Cache Prefetch for Write
Assembler Note

To form a virtual address DPFW calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offsets and encodes this 
into the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)
(pAddr, attributes, cause) ← ltranslate(vAddr, CRING)
if not invalid(attributes) then

dprefetch(vAddr, pAddr, 1, 0, 0)
endif

Exceptions

EveryInstR Group (see page 244)
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Data Cache Prefetch for Write Once DPFWO
Instruction Word (RRI8)

Required Configuration Option

Data Cache Option (See Section 4.5.5 on page 118)

Assembler Syntax

DPFWO as, 0..1020

Description

DPFWO performs a data cache prefetch for write once. The purpose of DPFWO is to im-
prove performance, but not to affect the ISA state. Therefore, some Xtensa ISA imple-
mentations may choose to implement this instruction as a simple “no-operation” instruc-
tion. In general, the performance improvement from using this instruction is 
implementation-dependent.

In some Xtensa ISA implementations, DPFWO checks whether the line containing the 
specified address is present in the data cache, and if not, begins the transfer of the line 
from memory. Four data prefetch instructions provide different “hints” about how the 
data is likely to be used in the future. DPFWO indicates that the data is likely to be read 
and written once before it is replaced by another line in the cache. In some implementa-
tions, this write hint fetches the data with write permission (for example, in a system with 
shared and exclusive states). The write-once hint might be used to select a specific 
cache way or to select a streaming buffer instead of the cache.

DPFWO forms a virtual address by adding the contents of address register as and an  
8-bit zero-extended constant value encoded in the instruction word shifted left by two. 
Therefore, the offset can specify multiples of four from zero to 1020. If the Region Trans-
lation Option (page 156) or the MMU Option (page 158) is enabled, the virtual address is 
translated to the physical address. If not, the physical address is identical to the virtual 
address. If the translation or memory reference encounters an error (for example, pro-
tection violation or non-existent memory), the processor performs no operation. This al-
lows the instruction to be used to speculatively fetch an address that does not exist or is 
protected without either causing an error or allowing inappropriate action.

Because the organization of caches is implementation-specific, the operation section 
below specifies only a call to the implementation’s dprefetch function.

23 16 15 12 11 8 7 4 3 0

imm8 0 1 1 1 s 0 0 1 1 0 0 1 0

8 4 4 4 4
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DPFWO Data Cache Prefetch for Write Once
Assembler Note

To form a virtual address DPFWO calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)
(pAddr, attributes, cause) ← ltranslate(vAddr, CRING)
if not invalid(attributes) then

dprefetch(vAddr, pAddr, 1, 1, 0)
endif

Exceptions

EveryInstR Group (see page 244)
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Load/Store Synchronize DSYNC
Instruction Word (RRR)

Required Configuration Option 

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

DSYNC

Description

DSYNC waits for all previously fetched WSR.*, XSR.*, WDTLB, and IDTLB instructions to 
be performed before interpreting the virtual address of the next load or store instruction. 
This operation is also performed as part of ISYNC, RSYNC, and ESYNC.

This instruction is appropriate after WSR.DBREAKC* and WSR.DBREAKA* instructions. 
See the Special Register Tables in Section 5.3 on page 208 and Section 5.5 on 
page 239 for a complete description of the uses of the DSYNC instruction.

Because the instruction execution pipeline is implementation-specific, the operation sec-
tion below specifies only a call to the implementation’s dsync function.

Operation

dsync()

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0

4 4 4 4 4 4
Xtensa Instruction Set Architecture (ISA) Reference Manual 339



ENTRY Subroutine Entry
Instruction Word (BRI12)

Required Configuration Option

Windowed Register Option (See Section 4.7.1 on page 180)

Assembler Syntax

ENTRY as, 0..32760

Description

ENTRY is intended to be the first instruction of all subroutines called with CALL4, CALL8, 
CALL12, CALLX4, CALLX8, or CALLX12. This instruction is not intended to be used by a 
routine called by CALL0 or CALLX0.

ENTRY serves two purposes:
1. First, it increments the register window pointer (WindowBase) by the amount re-

quested by the caller (as recorded in the PS.CALLINC field). 
2. Second, it copies the stack pointer from caller to callee and allocates the callee’s 

stack frame. The as operand specifies the stack pointer register; it must specify one 
of a0..a3 or the operation of ENTRY is undefined. It is read before the window is 
moved, the stack frame size is subtracted, and then the as register in the moved 
window is written.

The stack frame size is specified as the 12-bit unsigned imm12 field in units of eight 
bytes. The size is zero-extended, shifted left by 3, and subtracted from the caller’s stack 
pointer to get the callee’s stack pointer. Therefore, stack frames up to 32760 bytes can 
be specified. The initial stack frame size must be a constant, but subsequently the 
MOVSP instruction can be used to allocate dynamically-sized objects on the stack, or to 
further extend a constant stack frame larger than 32760 bytes.

The windowed subroutine call protocol is described in Section 4.7.1.5 on page 187.

ENTRY is undefined if PS.WOE is 0 or if PS.EXCM is 1. Some implementations raise an 
illegal instruction exception in these cases, as a debugging aid.

23 12 11 8 7 6 5 4 3 0

imm12 s 0 0 1 1 0 1 1 0

12 4 2 2 4
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Subroutine Entry ENTRY
Assembler Note

In the assembler syntax, the number of bytes to be subtracted from the stack pointer is 
specified as the immediate. The assembler encodes this into the instruction by dividing 
by eight.

Operation

WindowCheck (00, PS.CALLINC, 00)
if as > 3 | PS.WOE = 0 | PS.EXCM = 1 then

-- undefined operation
-- may raise illegal instruction exception

else
AR[PS.CALLINC||s1..0] ← AR[s] − (017||imm12||03)
WindowBase ← WindowBase + (02||PS.CALLINC)
WindowStartWindowBase ← 1

endif

Exceptions

EveryInstR Group (see page 244)
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ESYNC Execute Synchronize
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

ESYNC

Description

ESYNC waits for all previously fetched WSR.*, and XSR.* instructions to be performed 
before the next instruction uses any register values. This operation is also performed as 
part of ISYNC and RSYNC. DSYNC is performed as part of this instruction.

This instruction is appropriate after WSR.EPC* instructions. See the Special Register 
Tables in Section 5.3 on page 208 for a complete description of the uses of the ESYNC 
instruction.

Because the instruction execution pipeline is implementation-specific, the operation sec-
tion below specifies only a call to the implementation’s esync function.

Operation

esync()

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

4 4 4 4 4 4
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Exception Wait EXCW
Instruction Word (RRR)

Required Configuration Option

Exception Option (See Section 4.4.1 on page 82)

Assembler Syntax

EXCW

Description

EXCW waits for any exceptions of previously fetched instructions to be handled. Some 
Xtensa ISA implementations may have imprecise exceptions; on these implementations 
EXCW waits until all previous instruction exceptions are taken or the instructions are 
known to be exception-free. Because the instruction execution pipeline and exception 
handling is implementation-specific, the operation section below specifies only a call to 
the implementation’s ExceptionWait function.

Operation

ExceptionWait()

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

4 4 4 4 4 4
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EXTUI Extract Unsigned Immediate
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

EXTUI ar, at, shiftimm, maskimm

Description

EXTUI performs an unsigned bit field extraction from a 32-bit register value. Specifically, 
it shifts the contents of address register at right by the shift amount shiftimm, which is 
a value 0..31 stored in bits 16 and 11..8 of the instruction word (the sa fields). The 
shift result is then ANDed with a mask of maskimm least-significant 1 bits and the result 
is written to address register ar. The number of mask bits, maskimm, may take the val-
ues 1..16, and is stored in the op2 field as maskimm-1. The bits extracted are there-
fore sa+op2..sa.

The operation of this instruction when sa+op2 > 31 is undefined and reserved for future 
use.

Operation

mask ← 031-op2||1op2+1

AR[r] ← (032||AR[t])31+sa..sa and mask

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

op2 0 1 0 sa4 r sae3..0 t 0 0 0 0

4 4 4 4 4 4
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External Wait EXTW
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50) (added in RA-2004.1)

Assembler Syntax

EXTW

Description

EXTW is a superset of MEMW. EXTW ensures that both
- all previous load, store, acquire, release, prefetch, and cache instructions; and
- any other effect of any previous instruction which is visible at the pins of the 

Xtensa processor

complete (or perform as described in Section 4.3.12.1 on page 74) before either
- any subsequent load, store, acquire, release, prefetch, or cache instructions; or
- external effects of the execution of any following instruction is visible at the pins 

of the Xtensa processor (not including instruction prefetch or TIE Queue pops)

is allowed to begin.

While MEMW is intended to implement the volatile attribute of languages such as C 
and C++, EXTW is intended to be an ordering guarantee for all external effects that the 
processor can have, including processor pins defined in TIE.

Because the instruction execution pipeline is implementation-specific, the operation sec-
tion below specifies only a call to the implementation’s extw function.

Operation

extw()

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0

4 4 4 4 4 4
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FLOAT.S Convert Fixed to Single
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

FLOAT.S fr, as, 0..15

Description

FLOAT.S converts the contents of address register as from signed integer to single-pre-
cision format, rounding according to the current rounding mode. The converted integer 
value is then scaled by a power of two constant value encoded in the t field, with 0..15 
representing 1.0, 0.5, 0.25, …, 1.0÷s32768.0. The scaling allows for a fixed point nota-
tion where the binary point is at the right end of the integer for t=0 and moves to the left 
as t increases until for t=15 there are 15 fractional bits represented in the fixed point 
number. The result is written to floating-point register fr.

Operation

FR[r] ← floats(AR[s]) ×s pows(2.0,-t)

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 0 0 1 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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Floor Single to Fixed FLOOR.S
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

FLOOR.S ar, fs, 0..15

Description

FLOOR.S converts the contents of floating-point register fs from single-precision to 
signed integer format, rounding toward -∞. The single-precision value is first scaled by a 
power of two constant value encoded in the t field, with 0..15 representing 1.0, 2.0, 4.0, 
…, 32768.0. The scaling allows for a fixed point notation where the binary point is at the 
right end of the integer for t=0 and moves to the left as t increases until for t=15 there 
are 15 fractional bits represented in the fixed point number. For positive overflow (value 
≥ 32'h7fffffff), positive infinity, or NaN, 32'h7fffffff is returned; for negative 
overflow (value ≤ 32'h80000000) or negative infinity, 32'h80000000 is returned. The 
result is written to address register ar.

Operation

AR[r] ← floors(FR[s] ×s pows(2.0,t))

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 0 1 0 1 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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IDTLB Invalidate Data TLB Entry
Instruction Word (RRR)

Required Configuration Option

Region Protection Option (see Section 4.6.3 on page 150) or MMU Option (see 
Section 4.6.5 on page 158)

Assembler Syntax

IDTLB as

Description

IDTLB invalidates the data TLB entry specified by the contents of address register as. 
See Section 4.6 on page 138 for information on the address register formats for specific 
Memory Protection and Translation Options. The point at which the invalidation is effect-
ed is implementation-specific. Any translation that would be affected by this invalidation 
before the execution of a DSYNC instruction is therefore undefined.

IDTLB is a privileged instruction.

The representation of validity in Xtensa TLBs is implementation-specific, and thus the 
operation section below writes the implementation-specific value  
InvalidDataTLBEntry.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
(vpn, ei, wi) ← SplitDataTLBEntrySpec(AR[s])
DataTLB[wi][ei] ← InvalidDataTLBEntry

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 0 0 0 0 1 1 0 0 s 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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Instruction Cache Hit Invalidate IHI
Instruction Word (RRI8)

Required Configuration Option

Instruction Cache Option (See Section 4.5.2 on page 115)

Assembler Syntax

IHI as, 0..1020

Description

IHI performs an instruction cache hit invalidate. It invalidates the specified line in the in-
struction cache, if it is present. If the specified address is not in the instruction cache, 
then this instruction has no effect. If the specified line is already invalid, then this instruc-
tion has no effect. If the specified line has been locked by an IPFL instruction, then no 
invalidation is done and no exception is raised because of the lock. The line remains in 
the cache and must be unlocked by an IHU or IIU instruction before it can be invalidat-
ed. Otherwise, if the specified line is present, it is invalidated.

This instruction is required before executing instructions from the instruction cache that 
have been written by this processor, another processor, or DMA. The writes must first be 
forced out of the data cache, either by using DHWB or by using stores that bypass or 
write through the data cache. An ISYNC instruction should then be used to guarantee 
that the modified instructions are visible to instruction cache misses. The instruction 
cache should then be invalidated for the affected addresses using a series of IHI in-
structions. An ISYNC instruction should then be used to guarantee that this processor’s 
fetch pipeline does not contain instructions from the invalidated lines.

Because the organization of caches is implementation-specific, the operation section 
below specifies only a call to the implementation’s ihitinval function.

IHI forms a virtual address by adding the contents of address register as and an 8-bit 
zero-extended constant value encoded in the instruction word shifted left by two. There-
fore, the offset can specify multiples of four from zero to 1020. If the Region Translation 
Option (page 156) or the MMU Option (page 158) is enabled, the virtual address is 
translated to the physical address. If not, the physical address is identical to the virtual 

23 16 15 12 11 8 7 4 3 0

imm8 0 1 1 1 s 1 1 1 0 0 0 1 0

8 4 4 4 4
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IHI Instruction Cache Hit Invalidate
address. If the translation encounters an error (for example, protection violation), the 
processor raises one of several exceptions (see Section 4.4.1.5 on page 89). The trans-
lation is done as if the address were for an instruction fetch.

Assembler Note

To form a virtual address, IHI calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)
(pAddr, attributes, cause) ← ftranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)

else
ihitinval(vAddr, pAddr)

endif

Exceptions

EveryInstR Group (see page 244)
MemoryErrorException if Memory ECC/Parity Option
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Instruction Cache Hit Unlock IHU
Instruction Word (RRI4)

Required Configuration Option

Instruction Cache Index Lock Option (See Section 4.5.4 on page 117)

Assembler Syntax

IHU as, 0..240

Description

IHU performs an instruction cache unlock if hit. The purpose of IHU is to remove the 
lock created by an IPFL instruction. Xtensa ISA implementations that do not implement 
cache locking must raise an illegal instruction exception when this opcode is executed.

IHU checks whether the line containing the specified address is present in the instruc-
tion cache, and if so, it clears the lock associated with that line. To unlock by index with-
out knowing the address of the locked line, use the IIU instruction.

IHU forms a virtual address by adding the contents of address register as and a 4-bit 
zero-extended constant value encoded in the instruction word shifted left by four. There-
fore, the offset can specify multiples of 16 from zero to 240. If the Region Translation 
Option (page 156) or the MMU Option (page 158) is enabled, the virtual address is 
translated to the physical address. If not, the physical address is identical to the virtual 
address. If the translation encounters an error (for example or protection violation), the 
processor takes one of several exceptions (see Section 4.4.1.5 on page 89). The trans-
lation is done as if the address were for an instruction fetch.

IHU is a privileged instruction.

Assembler Note

To form a virtual address, IHU calculates the sum of address register as and the imm4 
field of the instruction word times 16. Therefore, the machine-code offset is in terms of 
16 byte units. However, the assembler expects a byte offset and encodes this into the 
instruction by dividing by 16.

23 20 19 16 15 12 11 8 7 4 3 0

imm4 0 0 1 0 0 1 1 1 s 1 1 0 1 0 0 1 0

4 4 4 4 4 4
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IHU Instruction Cache Hit Unlock
Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
vAddr ← AR[s] + (024||imm4||04)
(pAddr, attributes, cause) ← ftranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)

else
ihitunlock(vAddr, pAddr)

endif
endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option
MemoryErrorException if Memory ECC/Parity Option
352 Xtensa Instruction Set Architecture (ISA) Reference Manual



Instruction Cache Index Invalidate III
Instruction Word (RRI8)

Required Configuration Option

Instruction Cache Option (See Section 4.5.2 on page 115)

Assembler Syntax

III as, 0..1020

Description

III performs an instruction cache index invalidate. This instruction uses the virtual 
address to choose a location in the instruction cache and invalidates the specified line. 
The method for mapping the virtual address to an instruction cache location is imple-
mentation-specific. If the chosen line is already invalid, then this instruction has no 
effect. If the chosen line has been locked by an IPFL instruction, then no invalidation is 
done and no exception is raised because of the lock. The line remains in the cache and 
must be unlocked by an IHU or IIU instruction before it can be invalidated. This instruc-
tion is useful for instruction cache initialization after power-up or for invalidating the 
entire instruction cache.

III forms a virtual address by adding the contents of address register as and an 8-bit 
zero-extended constant value encoded in the instruction word shifted left by two. There-
fore, the offset can specify multiples of four from zero to 1020. The virtual address 
chooses a cache line without translation and without raising the associated exceptions.

Because the organization of caches is implementation-specific, the operation section 
below specifies only a call to the implementation’s iindexinval function.

III is a privileged instruction.

Assembler Note

To form a virtual address, III calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by four.

23 16 15 12 11 8 7 4 3 0

imm8 0 1 1 1 s 1 1 1 1 0 0 1 0

8 4 4 4 4
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III Instruction Cache Index Invalidate
Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
vAddr ← AR[s] + (022||imm8||02)
iindexinval(vAddr, pAddr)

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

Implementation Notes

x ← ceil(log2(InstCacheBytes))
y ← log2(InstCacheBytes ÷ InstCacheWayCount)
z ← log2(InstCacheLineBytes)

The cache line specified by index Addrx-1..z in a direct-mapped cache or way  
Addrx-1..y and index Addry-1..z in a set-associative cache is the chosen line. If the 
specified cache way is not valid (the fourth way of a three way cache), the instruction 
does nothing. In some implementations all ways at index Addry-1..z are invalidated 
regardless of the specified way, but for future compatibility this behavior should not be 
assumed.
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Invalidate Instruction TLB Entry IITLB
Instruction Word (RRR)

Required Configuration Option

Region Protection Option (see Section 4.6.3 on page 150) or MMU Option (see 
Section 4.6.5 on page 158)

Assembler Syntax

IITLB as

Description

IITLB invalidates the instruction TLB entry specified by the contents of address register 
as. See Section 4.6 on page 138 for information on the address register formats for spe-
cific Memory Protection and Translation options. The point at which the invalidation is 
effected is implementation-specific. Any translation that would be affected by this invali-
dation before the execution of an ISYNC instruction is therefore undefined.

IITLB is a privileged instruction.

The representation of validity in Xtensa TLBs is implementation-specific, and thus the 
operation section below writes the implementation-specific value  
InvalidInstTLBEntry.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
(vpn, ei, wi) ← SplitInstTLBEntrySpec(AR[s])
InstTLB[wi][ei] ← InvalidInstTLBEntry

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 0 0 0 0 0 1 0 0 s 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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IIU Instruction Cache Index Unlock
Instruction Word (RRI4)

Required Configuration Option

Instruction Cache Index Lock Option (See Section 4.5.4 on page 117)

Assembler Syntax

IIU as, 0..240

Description

IIU uses the virtual address to choose a location in the instruction cache and unlocks 
the chosen line. The purpose of IIU is to remove the lock created by an IPFL instruc-
tion. The method for mapping the virtual address to an instruction cache location is 
implementation-specific. This instruction is primarily useful for unlocking the entire 
instruction cache. Xtensa ISA implementations that do not implement cache locking 
must raise an illegal instruction exception when this opcode is executed.

To unlock a specific cache line if it is in the cache, use the IHU instruction.

IIU forms a virtual address by adding the contents of address register as and a 4-bit 
zero-extended constant value encoded in the instruction word shifted left by four. There-
fore, the offset can specify multiples of 16 from zero to 240. The virtual address chooses 
a cache line without translation and without raising the associated exceptions.

Because the organization of caches is implementation-specific, the operation section 
below specifies only a call to the implementation’s iindexunlock function.

IIU is a privileged instruction.

Assembler Note

To form a virtual address IIU calculates the sum of address register as and the imm4 
field of the instruction word times 16. Therefore, the machine-code offset is in terms of 
16 byte units. However, the assembler expects a byte offset and encodes this into the 
instruction by dividing by 16.

23 20 19 16 15 12 11 8 7 4 3 0

imm4 0 0 1 1 0 1 1 1 s 1 1 0 1 0 0 1 0

4 4 4 4 4 4
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Instruction Cache Index Unlock IIU
Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
vAddr ← AR[s] + (024||imm4||04)
iindexunlock(vAddr)

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option
MemoryErrorException if Memory ECC/Parity Option

Implementation Notes

x ← ceil(log2(InstCacheBytes))
y ← log2(InstCacheBytes ÷ InstCacheWayCount)
z ← log2(InstCacheLineBytes)

The cache line specified by index Addrx-1..z in a direct-mapped cache or way  
Addrx-1..y and index Addry-1..z in a set-associative cache is the chosen line. If the 
specified cache way is not valid (the fourth way of a three way cache), the instruction 
does nothing.
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ILL Illegal Instruction
Instruction Word (CALLX)

Required Configuration Option

Exception Option (See Section 4.4.1 on page 82) 

Assembler Syntax

ILL

Description

ILL is an opcode that is guaranteed to raise an illegal instruction exception in all imple-
mentations. 

Operation

Exception(IllegalInstructionCause)

Exceptions

EveryInst Group (see page 244)
GenExcep(IllegalInstructionCause) if Exception Option

23 20 19 16 15 12 11 8 7 6 5 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 4 4 4 2 2 4
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Narrow Illegal Instruction ILL.N
Instruction Word (RRRN)

Required Configuration Option

Code Density Option (See Section 4.3.1 on page 53) and Exception Option (See 
Section 4.4.1 on page 82)

Assembler Syntax

ILL.N

Description

ILL.N is a 16-bit opcode that is guaranteed to raise an illegal instruction exception.

Operation

Exception(IllegalInstructionCause)

Exceptions

EveryInst Group (see page 244)
GenExcep(IllegalInstructionCause) if Exception Option

15 12 11 8 7 4 3 0

1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1

4 4 4 4
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IPF Instruction Cache Prefetch
Instruction Word (RRI8)

Required Configuration Option

Instruction Cache Option (See Section 4.5.2 on page 115)

Assembler Syntax

IPF as, 0..1020

Description

IPF performs an instruction cache prefetch. The purpose of IPF is to improve perfor-
mance, but not to affect state defined by the ISA. Therefore, some Xtensa ISA imple-
mentations may choose to implement this instruction as a simple “no-operation” instruc-
tion. In general, the performance improvement from using this instruction is 
implementation-dependent. In some implementations, IPF checks whether the line con-
taining the specified address is present in the instruction cache, and if not, it begins the 
transfer of the line from memory to the instruction cache. Prefetching an instruction line 
may prevent the processor from taking an instruction cache miss later.

IPF forms a virtual address by adding the contents of address register as and an 8-bit 
zero-extended constant value encoded in the instruction word shifted left by two. There-
fore, the offset can specify multiples of four from zero to 1020. If the Region Translation 
Option (page 156) or the MMU Option (page 158) is enabled, the virtual address is 
translated to the physical address. If not, the physical address is identical to the virtual 
address. If the translation or memory reference encounters an error (for example, pro-
tection violation, or non-existent memory), the processor performs no operation. This 
allows the instruction to be used to speculatively fetch an address that does not exist or 
is protected without either causing an error or allowing inappropriate action. The transla-
tion is done as if the address were for an instruction fetch.

Assembler Note

To form a virtual address, IPF calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by four.

23 16 15 12 11 8 7 4 3 0

imm8 0 1 1 1 s 1 1 0 0 0 0 1 0

8 4 4 4 4
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Instruction Cache Prefetch IPF
Operation

vAddr ← AR[s] + (022||imm8||02)
(pAddr, attributes, cause) ← ftranslate(vAddr, CRING)
if not invalid(attributes) then

iprefetch(vAddr, pAddr, 0)
endif

Exceptions

EveryInstR Group (see page 244)
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IPFL Instruction Cache Prefetch and Lock
Instruction Word (RRI4)

Required Configuration Option

Instruction Cache Index Lock Option (See Section 4.5.4 on page 117)

Assembler Syntax

IPFL as, 0..240

Description

IPFL performs an instruction cache prefetch and lock. The purpose of IPFL is to 
improve performance, but not to affect state defined by the ISA. Xtensa ISA implementa-
tions that do not implement cache locking must raise an illegal instruction exception 
when this opcode is executed. In general, the performance improvement from using this 
instruction is implementation-dependent as implementations may not overlap the cache 
fill with the execution of other instructions.

In some implementations, IPFL checks whether the line containing the specified 
address is present in the instruction cache, and if not, begins the transfer of the line from 
memory to the instruction cache. The line is placed in the instruction cache and marked 
as locked, so it is not replaceable by ordinary instruction cache misses. To unlock the 
line, use IHU or IIU. To prefetch without locking, use the IPF instruction.

IPFL forms a virtual address by adding the contents of address register as and a 4-bit 
zero-extended constant value encoded in the instruction word shifted left by four. There-
fore, the offset can specify multiples of 16 from zero to 240. If the Region Translation 
Option (page 156) or the MMU Option (page 158) is enabled, the virtual address is 
translated to the physical address. If not, the physical address is identical to the virtual 
address. If the translation encounters an error (for example, protection violation), the 
processor raises one of several exceptions (see Section 4.4.1.5 on page 89). The trans-
lation is done as if the address were for an instruction fetch. If the line cannot be cached, 
an exception is raised with cause InstructionFetchErrorCause.

IPFL is a privileged instruction.

23 20 19 16 15 12 11 8 7 4 3 0

imm4 0 0 0 0 0 1 1 1 s 1 1 0 1 0 0 1 0

4 4 4 4 4 4
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Instruction Cache Prefetch and Lock IPFL
Assembler Note

To form a virtual address, IPFL calculates the sum of address register as and the imm4 
field of the instruction word times 16. Therefore, the machine-code offset is in terms of 
16 byte units. However, the assembler expects a byte offset and encodes this into the 
instruction by dividing by 16.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
vAddr ← AR[s] + (024||imm4||04)
(pAddr, attributes, cause) ← ftranslate(vAddr, CRING)
if invalid(attributes) then

EXCVADDR ← vAddr
Exception (cause)

else
iprefetch(vAddr, pAddr, 1)

endif
endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

Implementation Notes

If there are not two available InstCache ways at the required index before the instruction 
executes, an exception is raised.
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ISYNC Instruction Fetch Synchronize
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

ISYNC

Description

ISYNC waits for all previously fetched load, store, cache, TLB, WSR.*, and XSR.* 
instructions that affect instruction fetch to be performed before fetching the next instruc-
tion. RSYNC, ESYNC, and DSYNC are performed as part of this instruction.

The proper sequence for writing instructions and then executing them is:
write instructions
use DHWB to force the data out of the data cache (this step may be skipped if write-
through, bypass, or no allocate stores were used)
use ISYNC to wait for the writes to be visible to instruction cache misses
use multiple IHI instructions to invalidate the instruction cache for any lines that 
were modified (this step is not appropriate if the affected instructions are in InstRAM 
or cannot be cached)
use ISYNC to ensure that fetch pipeline will see the new instructions

This instruction also waits for all previously executed WSR.* and XSR.* instructions that 
affect instruction fetch or register access processor state, including:

WSR.LCOUNT, WSR.LBEG, WSR.LEND
WSR.IBREAKENABLE, WSR.IBREAKA[i]
WSR.CCOMPAREn 

See the Special Register Tables in Section 5.3 on page 208 and Section 5.7 on 
page 240, for a complete description of the ISYNC instruction’s uses.

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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Instruction Fetch Synchronize ISYNC
Operation

isync()

Exceptions

EveryInst Group (see page 244)

Implementation Notes

In many implementations, ISYNC consumes considerably more cycles than RSYNC, 
ESYNC, or DSYNC.
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J Unconditional Jump
Instruction Word (CALL)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

J label

Description

J performs an unconditional branch to the target address. It uses a signed, 18-bit PC-
relative offset to specify the target address. The target address is given by the address 
of the J instruction plus the sign-extended 18-bit offset field of the instruction plus 
four, giving a range of -131068 to +131075 bytes.

Operation

nextPC ← PC + (offset1714||offset) + 4

Exceptions

EveryInst Group (see page 244)

23 6 5 4 3 0

offset 0 0 0 1 1 0

18 2 4
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Unconditional Jump Long J.L
Instruction Word (CALL)

Required Configuration Option

Assembler Macro

Assembler Syntax

J.L label, an

Description

J.L is an assembler macro which generates exactly a J instruction as long as the offset 
will reach the label. If the offset is not long enough, the assembler relaxes the instruction 
to a literal load into an followed by a JX an.. The AR register an may or may not be 
modified.

Exceptions

EveryInstR Group (see page 244)

23 6 5 4 3 0

offset 0 0 0 1 1 0

18 2 4
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JX Unconditional Jump Register
Instruction Word (CALLX)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

JX as

Description

JX performs an unconditional jump to the address in register as.

Operation

nextPC ← AR[s]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 6 5 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 s 1 0 1 0 0 0 0 0

4 4 4 4 2 2 4
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Load 8-bit Unsigned L8UI
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

L8UI at, as, 0..255

Description

L8UI is an 8-bit unsigned load from memory. It forms a virtual address by adding the 
contents of address register as and an 8-bit zero-extended constant value encoded in 
the instruction word. Therefore, the offset ranges from 0 to 255. Eight bits (one byte) are 
read from the physical address. This data is then zero-extended and written to address 
register at.

If the Region Translation Option (page 156) or the MMU Option (page 158)is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Operation

vAddr ← AR[s] + (024||imm8)
(mem8, error) ← Load8(vAddr)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
AR[t] ← 024||mem8

endif

Exceptions

Memory Group (see page 244)
GenExcep(LoadProhibitedCause) if Region Protection Option or MMU Option
DebugExcep(DBREAK) if Debug Option

23 16 15 12 11 8 7 4 3 0

imm8 0 0 0 0 s t 0 0 1 0

8 4 4 4 4
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L16SI Load 16-bit Signed
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

L16SI at, as, 0..510

Description

L16SI is a 16-bit signed load from memory. It forms a virtual address by adding the con-
tents of address register as and an 8-bit zero-extended constant value encoded in the 
instruction word shifted left by 1. Therefore, the offset can specify multiples of two from 
zero to 510. Sixteen bits (two bytes) are read from the physical address. This data is 
then sign-extended and written to address register at.

If the Region Translation Option (page 156) or the MMU Option (page 158)is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation, non-existent memory), the processor raises one 
of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the least significant address bit is ig-
nored; a reference to an odd address produces the same result as a reference to the ad-
dress minus one. With the Unaligned Exception Option, such an access raises an 
exception.

Assembler Note

To form a virtual address, L16SI calculates the sum of address register as and the 
imm8 field of the instruction word times two. Therefore, the machine-code offset is in 
terms of 16-bit (2 byte) units. However, the assembler expects a byte offset and encodes 
this into the instruction by dividing by two.

Operation

vAddr ← AR[s] + (023||imm8||0)
(mem16, error) ← Load16(vAddr)

23 16 15 12 11 8 7 4 3 0

imm8 1 0 0 1 s t 0 0 1 0

8 4 4 4 4
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Load 16-bit Signed L16SI
if error then
EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
AR[t] ← mem1615

16||mem16
endif

Exceptions

Memory Load Group (see page 244)
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L16UI Load 16-bit Unsigned
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

L16UI at, as, 0..510

Description

L16UI is a 16-bit unsigned load from memory. It forms a virtual address by adding the 
contents of address register as and an 8-bit zero-extended constant value encoded in 
the instruction word shifted left by 1. Therefore, the offset can specify multiples of two 
from zero to 510. Sixteen bits (two bytes) are read from the physical address. This data 
is then zero-extended and written to address register at.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the least significant address bit is ig-
nored; a reference to an odd address produces the same result as a reference to the ad-
dress minus one. With the Unaligned Exception Option, such an access raises an 
exception.

Assembler Note

To form a virtual address, L16UI calculates the sum of address register as and the 
imm8 field of the instruction word times two. Therefore, the machine-code offset is in 
terms of 16-bit (2 byte) units. However, the assembler expects a byte offset and encodes 
this into the instruction by dividing by two.

Operation

vAddr ← AR[s] + (023||imm8||0)
(mem16, error) ← Load16(vAddr)

23 16 15 12 11 8 7 4 3 0

imm8 0 0 0 1 s t 0 0 1 0

8 4 4 4 4
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Load 16-bit Unsigned L16UI
if error then
EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
AR[t] ← 016||mem16

endif

Exceptions

Memory Load Group (see page 244)
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L32AI Load 32-bit Acquire
Instruction Word (RRI8)

Required Configuration Option

Multiprocessor Synchronization Option (See Section 4.3.12 on page 74)

Assembler Syntax

L32AI at, as, 0..1020

Description

L32AI is a 32-bit load from memory with “acquire” semantics. This load performs before 
any subsequent loads, stores, acquires, or releases are performed. It is typically used to 
test a synchronization variable protecting a critical region (for example, to acquire a 
lock).

L32AI forms a virtual address by adding the contents of address register as and an  
8-bit zero-extended constant value encoded in the instruction word shifted left by two. 
Therefore, the offset can specify multiples of four from zero to 1020. 32 bits (four bytes) 
are read from the physical address. This data is then written to address register at. 
L32AI causes the processor to delay processing of subsequent loads, stores, acquires, 
and releases until the L32AI is performed. In some Xtensa ISA implementations, this 
occurs automatically and L32AI is identical to L32I. Other implementations (for exam-
ple, those with multiple outstanding loads and stores) delay processing as described 
above. Because the method of delay is implementation-dependent, this is indicated in 
the operation section below by the implementation function acquire.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

23 16 15 12 11 8 7 4 3 0

imm8 1 0 1 1 s t 0 0 1 0

8 4 4 4 4
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Load 32-bit Acquire L32AI
Assembler Note

To form a virtual address, L32AI calculates the sum of address register as and the 
imm8 field of the instruction word times four. Therefore, the machine-code offset is in 
terms of 32-bit (4 byte) units. However, the assembler expects a byte offset and encodes 
this into the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)
(mem32, error) ← Load32(vAddr)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
AR[t] ← mem32
acquire()

endif

Exceptions

Memory Load Group (see page 244)
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L32E Load 32-bit for Window Exceptions
Instruction Word (RRI4)

Required Configuration Option

Windowed Register Option (See Section 4.7.1 on page 180)

Assembler Syntax

L32E at, as, -64..-4

Description

L32E is a 32-bit load instruction similar to L32I but with semantics required by window 
overflow and window underflow exception handlers. In particular, memory access check-
ing is done with PS.RING instead of CRING, and the offset used to form the virtual ad-
dress is a 4-bit one-extended immediate. Therefore, the offset can specify multiples of 
four from -64 to -4. In configurations without the MMU Option, there is no PS.RING, and 
L32E is similar to L32I with a negative offset.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

L32E is a privileged instruction.

Assembler Note

To form a virtual address, L32E calculates the sum of address register as and the r field 
of the instruction word times four (and one extended). Therefore, the machine-code 
offset is in terms of 32-bit (4 byte) units. However, the assembler expects a byte offset 
and encodes this into the instruction by dividing by four.

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 1 0 0 1 r s t 0 0 0 0

4 4 4 4 4 4
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Load 32-bit for Window Exceptions L32E
Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
vAddr ← AR[s] + (126||r||02)
ring ← if MMU Option then PS.RING else 0
(mem32, error) ← Load32Ring(vAddr, ring)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
AR[t] ← mem32

endif
endif

Exceptions

Memory Load Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option
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L32I Load 32-bit
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

L32I at, as, 0..1020

Description

L32I is a 32-bit load from memory. It forms a virtual address by adding the contents of 
address register as and an 8-bit zero-extended constant value encoded in the instruc-
tion word shifted left by two. Therefore, the offset can specify multiples of four from zero 
to 1020. Thirty-two bits (four bytes) are read from the physical address. This data is then 
written to address register at.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation, non-existent memory), the processor raises one 
of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

L32I is one of only a few memory reference instructions that can access instruction 
RAM/ROM.

Assembler Note

The assembler may convert L32I instructions to L32I.N when the Code Density 
Option is enabled and the immediate operand falls within the available range. Prefixing 
the L32I instruction with an underscore (_L32I) disables this optimization and forces 
the assembler to generate the wide form of the instruction.

23 16 15 12 11 8 7 4 3 0

imm8 0 0 1 0 s t 0 0 1 0

8 4 4 4 4
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Load 32-bit L32I
To form a virtual address, L32I calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)
(mem32, error) ← Load32(vAddr)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
AR[t] ← mem32

endif

Exceptions

Memory Load Group (see page 244)
Xtensa Instruction Set Architecture (ISA) Reference Manual 379



L32I.N Narrow Load 32-bit
Instruction Word (RRRN)

Required Configuration Option

Code Density Option (See Section 4.3.1 on page 53)

Assembler Syntax

L32I.N at, as, 0..60

Description

L32I.N is similar to L32I, but has a 16-bit encoding and supports a smaller range of 
offset values encoded in the instruction word.

L32I.N is a 32-bit load from memory. It forms a virtual address by adding the contents 
of address register as and a 4-bit zero-extended constant value encoded in the instruc-
tion word shifted left by two. Therefore, the offset can specify multiples of four from zero 
to 60. Thirty-two bits (four bytes) are read from the physical address. This data is then 
written to address register at.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

L32I.N is one of only a few memory reference instructions that can access instruction 
RAM/ROM.

15 12 11 8 7 4 3 0

imm4 s t 1 0 0 0

4 4 4 4
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Narrow Load 32-bit L32I.N
Assembler Note

The assembler may convert L32I.N instructions to L32I. Prefixing the L32I.N instruc-
tion with an underscore (_L32I.N) disables this optimization and forces the assembler 
to generate the narrow form of the instruction.

To form a virtual address, L32I.N calculates the sum of address register as and the 
imm4 field of the instruction word times four. Therefore, the machine-code offset is in 
terms of 32-bit (4 byte) units. However, the assembler expects a byte offset and encodes 
this into the instruction by dividing by four.

Operation

vAddr ← AR[s] + (026||imm4||02)
(mem32, error) ← Load32(vAddr)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
AR[t] ← mem32

endif

Exceptions

Memory Load Group (see page 244)
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L32R Load 32-bit PC-Relative
Instruction Word (RI6)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

L32R at, label

Description

L32R is a PC-relative 32-bit load from memory. It is typically used to load constant 
values into a register when the constant cannot be encoded in a MOVI instruction.

L32R forms a virtual address by adding the 16-bit one-extended constant value encoded 
in the instruction word shifted left by two to the address of the L32R plus three with the 
two least significant bits cleared. Therefore, the offset can always specify 32-bit aligned 
addresses from -262141 to -4 bytes from the address of the L32R instruction. 32 bits 
(four bytes) are read from the physical address. This data is then written to address 
register at.

In the presence of the Extended L32R Option (Section 4.3.3 on page 56) when LIT-
BASE[0] is clear, the instruction has the identical operation. When LITBASE[0] is set, 
L32R forms a virtual address by adding the 16-bit one extended constant value encoded 
in the instruction word shifted left by two to the literal base address indicated by the up-
per 20 bits of LITBASE. The offset can specify 32-bit aligned addresses from -262144 to 
-4 bytes from the literal base address.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

It is not possible to specify an unaligned address.

L32R is one of only a few memory reference instructions that can access instruction 
RAM/ROM.

23 8 7 4 3 0

imm16 t 0 0 0 1

16 4 4
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Load 32-bit PC-Relative L32R
Assembler Note

In the assembler syntax, the immediate operand is specified as the address of the loca-
tion to load from, rather than the offset from the current instruction address. The linker 
and the assembler both assume that the location loaded by the L32R instruction has not 
been and will not be accessed by any other type of load or store instruction and optimiz-
es according to that assumption.

Operation

if Extended L32R Option and LITBASE0 then
vAddr ← (LITBASE31..12||012) + (114||imm16||02)

else
vAddr ← ((PC + 3)31..2||02) + (114||imm16||02)

endif
(mem32, error) ← Load32(vAddr)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
AR[t] ← mem32

endif

Exceptions

Memory Group (see page 244)
GenExcep(LoadProhibitedCause) if Region Protection Option or MMU Option
DebugExcep(DBREAK) if Debug Option
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LDCT Load Data Cache Tag
Instruction Word (RRR)

Required Configuration Option

Data Cache Test Option (See Section 4.5.6 on page 121)

Assembler Syntax

LDCT at, as

Description

LDCT is not part of the Xtensa Instruction Set Architecture, but is instead specific to an 
implementation. That is, it may not exist in all implementations of the Xtensa ISA.

LDCT is intended for reading the RAM array that implements the data cache tags as part 
of manufacturing test.

LDCT uses the contents of address register as to select a line in the data cache, reads 
the tag associated with this line, and writes the result to address register at. The value 
written to at is described under Cache Tag Format in Section 4.5.1.2 on page 112.

LDCT is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
index ← AR[s]dih..dil
AR[t] ← DataCacheTag[index]

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option
MemoryErrorException if Memory ECC/Parity Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 0 0 0 1 1 0 0 0 s t 0 0 0 0

4 4 4 4 4 4
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Load Data Cache Tag LDCT
Implementation Notes

x ← ceil(log2(DataCacheBytes))
y ← log2(DataCacheBytes ÷ DataCacheWayCount)
z ← log2(DataCacheLineBytes)

The cache line specified by index AR[s]x-1..z in a direct-mapped cache or way 
AR[s]x-1..y and index AR[s]y-1..z in a set-associative cache is the chosen line. If the 
specified cache way is not valid (the fourth way of a three way cache), the instruction 
loads an undefined value.
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LDDEC Load with Autodecrement
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

LDDEC mw, as

Description

LDDEC loads MAC16 register mw from memory using auto-decrement addressing. It 
forms a virtual address by subtracting 4 from the contents of address register as. 32 bits 
(four bytes) are read from the physical address. This data is then written to MAC16 
register mw, and the virtual address is written back to address register as.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

Operation

vAddr ← AR[s] − 4
(mem32, error) ← Load32(vAddr)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
MR[w] ← mem32
AR[s] ← vAddr

endif

Exceptions

Memory Load Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 0 1 0 0 0 0 0 0 w s 0 0 0 0 0 1 0 0

4 4 4 4 4 4
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Load with Autoincrement LDINC
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

LDINC mw, as

Description

LDINC loads MAC16 register mw from memory using auto-increment addressing. It 
forms a virtual address by adding 4 to the contents of address register as. 32 bits (four 
bytes) are read from the physical address. This data is then written to MAC16 register 
mw, and the virtual address is written back to address register as.

If the Region Translation Option (page 156) or the MMU Option (page 158)is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

Operation

vAddr ← AR[s] + 4
(mem32, error) ← Load32(vAddr)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
MR[w] ← mem32
AR[s] ← vAddr

endif

Exceptions

Memory Load Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 0 0 0 0 0 0 0 0 w s 0 0 0 0 0 1 0 0

4 4 4 4 4 4
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LICT Load Instruction Cache Tag
Instruction Word (RRR)

Required Configuration Option

Instruction Cache Test Option (See Section 4.5.3 on page 116)

Assembler Syntax

LICT at, as

Description

LICT is not part of the Xtensa Instruction Set Architecture, but is instead specific to an 
implementation. That is, it may not exist in all implementations of the Xtensa ISA.

LICT is intended for reading the RAM array that implements the instruction cache tags 
as part of manufacturing test.

LICT uses the contents of address register as to select a line in the instruction cache, 
reads the tag associated with this line, and writes the result to address register at. The 
value written to at is described under Cache Tag Format in Section 4.5.1.2 on 
page 112.

LICT is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
index ← AR[s]iih..iil
AR[t] ← InstCacheTag[index]

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 0 0 0 1 0 0 0 0 s t 0 0 0 0

4 4 4 4 4 4
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Load Instruction Cache Tag LICT
Implementation Notes

x ← ceil(log2(InstCacheBytes))
y ← log2(InstCacheBytes ÷ InstCacheWayCount)
z ← log2(InstCacheLineBytes)

The cache line specified by index AR[s]x-1..z in a direct-mapped cache or way 
AR[s]x-1..y and index AR[s]y-1..z in a set-associative cache is the chosen line. If the 
specified cache way is not valid (the fourth way of a three way cache), the instruction 
loads an undefined value.
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LICW Load Instruction Cache Word
Instruction Word (RRR)

Required Configuration Option

Instruction Cache Test Option (See Section 4.5.3 on page 116)

Assembler Syntax

LICW at, as

Description

LICW is not part of the Xtensa Instruction Set Architecture, but is instead specific to an 
implementation. That is, it may not exist in all implementations of the Xtensa ISA.

LICW is intended for reading the RAM array that implements the instruction cache as 
part of manufacturing test.

LICW uses the contents of address register as to select a line in the instruction cache 
and one 32-bit quantity within that line, reads that data, and writes the result to address 
register at.

LICW is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
index ← AR[s]iih..2
AR[t] ← InstCacheData [index]

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option
MemoryErrorException if Memory ECC/Parity Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 0 0 0 1 0 0 1 0 s t 0 0 0 0

4 4 4 4 4 4
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Load Instruction Cache Word LICW
Implementation Notes

x ← ceil(log2(InstCacheBytes))
y ← log2(InstCacheBytes ÷ InstCacheWayCount)
z ← log2(InstCacheLineBytes)

The cache line specified by index AR[s]x-1..z in a direct-mapped cache or way 
AR[s]x-1..y and index AR[s]y-1..z in a set-associative cache is the chosen line. If the 
specified cache way is not valid (the fourth way of a three way cache), the instruction 
loads an undefined value. Within the cache line, AR[s]z-1..2 is used to determine 
which 32-bit quantity within the line is loaded.
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LOOP Loop
Instruction Word (RRI8)

Required Configuration Option

Loop Option (See Section 4.3.2 on page 54)

Assembler Syntax

LOOP as, label

Description

LOOP sets up a zero-overhead loop by setting the LCOUNT, LBEG, and LEND special 
registers, which control instruction fetch. The loop will iterate the number of times speci-
fied by address register as, with 0 causing the loop to iterate 232 times. LCOUNT, the 
current loop iteration counter, is loaded from the contents of address register as minus 
one. LEND is the loop end address and is loaded with the address of the LOOP instruc-
tion plus four, plus the zero-extended 8-bit offset encoded in the instruction (therefore, 
the loop code may be up to 256 bytes in length). LBEG, the loop begin address, is loaded 
with the address of the following instruction (the address of the LOOP instruction plus 
three).

After the processor fetches an instruction that increments the PC to the value contained 
in LEND, and LCOUNT is not zero, it loads the PC with the contents of LBEG and decre-
ments LCOUNT. LOOP is intended to be implemented with help from the instruction fetch 
engine of the processor, and therefore should not incur a mispredict or taken branch 
penalty. Branches and jumps to the address contained in LEND do not cause a loop 
back, and therefore may be used to exit the loop prematurely. Likewise, a return from a 
call instruction as the last instruction of the loop would not trigger loop back; this case 
should be avoided.

There is no mechanism to proceed to the next iteration of the loop from the middle of the 
loop. The compiler may insert a branch to a NOP placed as the last instruction of the loop 
to implement this function if required.

Because LCOUNT, LBEG, and LEND are single registers, zero-overhead loops may not be 
nested. Using conditional branch instructions to implement outer level loops is typically 
not a performance issue. Because loops cannot be nested, it is usually inappropriate to 
include a procedure call inside a loop (the callee might itself use a zero-overhead loop).

23 16 15 12 11 8 7 4 3 0

imm8 1 0 0 0 s 0 1 1 1 0 1 1 0

8 4 4 4 4
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Loop LOOP
To simplify the implementation of zero-overhead loops, the LBEG address, which is the 
LOOP instruction address plus three, must be such that the first instruction must entirely 
fit within a naturally aligned four byte region or, if the instruction is larger than four bytes, 
a naturally aligned region which is the next power of two equal to or larger than the 
instruction. When the LOOP instruction would not naturally be placed at such an 
address, the insertion of NOP instructions or adjustment of which instructions are 16-bit 
density instructions is sufficient to give it the required alignment.

The automatic loop-back when the PC increments to match LEND is disabled when 
PS.EXCM is set. This prevents non-privileged code from affecting the operation of the 
privileged exception vector code.

Assembler Note

The assembler automatically aligns the LOOP instruction as required.

When the label is out of range, the assembler may insert a number of instructions to 
extend the size of the loop. Prefixing the instruction mnemonic with an underscore 
(_LOOP) disables this feature and forces the assembler to generate an error in this case.

Operation

LCOUNT ← AR[s] − 1
LBEG ← PC + 3
LEND ← PC + (024||imm8) + 4

Exceptions

EveryInstR Group (see page 244)

Implementation Notes

In some implementations, LOOP takes an extra clock for the first loop back of certain 
loops. In addition, certain instructions (such as ISYNC or a write to LEND) may cause an 
additional cycle on the following loop back.
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LOOPGTZ Loop if Greater Than Zero
Instruction Word (RRI8)

Required Configuration Option

Loop Option (See Section 4.3.2 on page 54)

Assembler Syntax

LOOPGTZ as, label

Description

LOOPGTZ sets up a zero-overhead loop by setting the LCOUNT, LBEG, and LEND special 
registers, which control instruction fetch. The loop will iterate the number of times speci-
fied by address register as with values ≤ 0 causing the loop to be skipped altogether by 
branching directly to the loop end address. LCOUNT, the current loop iteration counter, is 
loaded from the contents of address register as minus one. LEND is the loop end 
address and is loaded with the address of the LOOPGTZ instruction plus four, plus the 
zero-extended 8-bit offset encoded in the instruction (therefore, the loop code may be 
up to 256 bytes in length). LBEG, the loop begin address, is loaded with the address of 
the following instruction (the address of the LOOPGTZ instruction plus three). LCOUNT, 
LEND, and LBEG are still loaded even when the loop is skipped.

After the processor fetches an instruction that increments the PC to the value contained 
in LEND, and LCOUNT is not zero, it loads the PC with the contents of LBEG and decre-
ments LCOUNT. LOOPGTZ is intended to be implemented with help from the instruction 
fetch engine of the processor, and therefore should not incur a mispredict or taken 
branch penalty. Branches and jumps to the address contained in LEND do not cause a 
loop back, and therefore may be used to exit the loop prematurely. Similarly, a return 
from a call instruction as the last instruction of the loop would not trigger loop back; this 
case should be avoided.

There is no mechanism to proceed to the next iteration of the loop from the middle of the 
loop. The compiler may insert a branch to a NOP placed as the last instruction of the loop 
to implement this function if required.

23 16 15 12 11 8 7 4 3 0

imm8 1 0 1 0 s 0 1 1 1 0 1 1 0

8 4 4 4 4
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Loop if Greater Than Zero LOOPGTZ
Because LCOUNT, LBEG, and LEND are single registers, zero-overhead loops may not be 
nested. Using conditional branch instructions to implement outer level loops is typically 
not a performance issue. Because loops cannot be nested, it is usually inappropriate to 
include a procedure call inside a loop (the callee might itself use a zero-overhead loop).

To simplify the implementation of zero-overhead loops, the LBEG address, which is the 
LOOP instruction address plus three, must be such that the first instruction must entirely 
fit within a naturally aligned four byte region or, if the instruction is larger than four bytes, 
a naturally aligned region which is the next power of two equal to or larger than the 
instruction. When the LOOP instruction would not naturally be placed at such an 
address, the insertion of NOP instructions or adjustment of which instructions are 16-bit 
density instructions is sufficient to give it the required alignment.

The automatic loop-back when the PC increments to match LEND is disabled when 
PS.EXCM is set. This prevents non-privileged code from affecting the operation of the 
privileged exception vector code.

Assembler Note

The assembler automatically aligns the LOOPGTZ instruction as required.

When the label is out of range, the assembler may insert a number of instructions to 
extend the size of the loop. Prefixing the instruction mnemonic with an underscore 
(_LOOPGTZ) disables this feature and forces the assembler to generate an error in this 
case.

Operation

LCOUNT ← AR[s] − 1
LBEG ← PC + 3
LEND ← PC + (024||imm8) + 4
if AR[s] ≤ 032 then

nextPC ← PC + (024||imm8) + 4
endif

Exceptions

EveryInstR Group (see page 244)

Implementation Notes

In some implementations, LOOPGTZ takes an extra clock for the first loop back of certain 
loops. In addition, certain instructions (such as ISYNC or a write to LEND) may cause an 
additional cycle on the following loop back.
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LOOPNEZ Loop if Not-Equal Zero
Instruction Word (RRI8)

Required Configuration Option

Loop Option (See Section 4.3.2 on page 54)

Assembler Syntax

LOOPNEZ as, label

Description

LOOPNEZ sets up a zero-overhead loop by setting the LCOUNT, LBEG, and LEND special 
registers, which control instruction fetch. The loop will iterate the number of times speci-
fied by address register as with the zero value causing the loop to be skipped altogether 
by branching directly to the loop end address. LCOUNT, the current loop iteration 
counter, is loaded from the contents of address register as minus 1. LEND is the loop 
end address and is loaded with the address of the LOOPNEZ instruction plus four plus 
the zero-extended 8-bit offset encoded in the instruction (therefore, the loop code may 
be up to 256 bytes in length). LBEG is loaded with the address of the following instruc-
tion (the address of the LOOPNEZ instruction plus three). LCOUNT, LEND, and LBEG are 
still loaded even when the loop is skipped.

After the processor fetches an instruction that increments the PC to the value contained 
in LEND, and LCOUNT is not zero, it loads the PC with the contents of LBEG and decre-
ments LCOUNT. LOOPNEZ is intended to be implemented with help from the instruction 
fetch engine of the processor, and therefore should not incur a mispredict or taken 
branch penalty. Branches and jumps to the address contained in LEND do not cause a 
loop back, and therefore may be used to exit the loop prematurely. Similarly a return 
from a call instruction as the last instruction of the loop would not trigger loop back; this 
case should be avoided.

There is no mechanism to proceed to the next iteration of the loop from the middle of the 
loop. The compiler may insert a branch to a NOP placed as the last instruction of the loop 
to implement this function if required.

23 16 15 12 11 8 7 4 3 0

imm8 1 0 0 1 s 0 1 1 1 0 1 1 0
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Loop if Not-Equal Zero LOOPNEZ
Because LCOUNT, LBEG, and LEND are single registers, zero-overhead loops may not be 
nested. Using conditional branch instructions to implement outer level loops is typically 
not a performance issue. Because loops cannot be nested, it is usually inappropriate to 
include a procedure call inside a loop (the callee might itself use a zero-overhead loop).

To simplify the implementation of zero-overhead loops, the LBEG address, which is the 
LOOP instruction address plus three, must be such that the first instruction must entirely 
fit within a naturally aligned four byte region or, if the instruction is larger than four bytes, 
a naturally aligned region which is the next power of two equal to or larger than the 
instruction. When the LOOP instruction would not naturally be placed at such an ad-
dress, the insertion of NOP instructions or adjustment of which instructions are 16-bit 
density instructions is sufficient to give it the required alignment.

The automatic loop-back when the PC increments to match LEND is disabled when 
PS.EXCM is set. This prevents non-privileged code from affecting the operation of the 
privileged exception vector code.

Assembler Note

The assembler automatically aligns the LOOPNEZ instruction as required.

When the label is out of range, the assembler may insert a number of instructions to 
extend the size of the loop. Prefixing the instruction mnemonic with an underscore 
(_LOOPNEZ) disables this feature and forces the assembler to generate an error in this 
case.

Operation

LCOUNT ← AR[s] − 1
LBEG ← PC + 3
LEND ← PC + (024||imm8) + 4)
if AR[s] = 032 then

nextPC ← PC + (024||imm8) + 4
endif

Exceptions

EveryInstR Group (see page 244)

Implementation Notes

In some implementations, LOOPNEZ takes an extra clock for the first loop back of certain 
loops. In addition, certain instructions (such as ISYNC or a write to LEND) may cause an 
additional cycle on the following loop back.
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LSI Load Single Immediate
Instruction Word (RRI8)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

LSI ft, as, 0..1020

Description

LSI is a 32-bit load from memory to the floating-point register file. It forms a virtual ad-
dress by adding the contents of address register as and an 8-bit zero-extended constant 
value encoded in the instruction word shifted left by two. Therefore, the offset can spec-
ify multiples of four from zero to 1020. Thirty-two bits (four bytes) are read from the 
physical address. This data is then written to floating-point register ft.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

Assembler Note

To form a virtual address, LSI calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)
(mem32, error) ← Load32(vAddr)

23 16 15 12 11 8 7 4 3 0

imm8 0 0 0 0 s t 0 0 1 1
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Load Single Immediate LSI
if error then
EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
FR[t] ← mem32

endif

Exceptions

Memory Load Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option
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LSIU Load Single Immediate with Update
Instruction Word (RRI8)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

LSIU ft, as, 0..1020

Description

LSIU is a 32-bit load from memory to the floating-point register file with base address 
register update. It forms a virtual address by adding the contents of address register as 
and an 8-bit zero-extended constant value encoded in the instruction word shifted left by 
two. Therefore, the offset can specify multiples of four from zero to 1020. Thirty-two bits 
(four bytes) are read from the physical address. This data is then written to floating-point 
register ft and the virtual address is written back to address register as.

If the Region Translation Option (page 156) or the MMU Option (page 158)is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

Assembler Note

To form a virtual address, LSIU calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)

23 16 15 12 11 8 7 4 3 0

imm8 1 0 0 0 s t 0 0 1 1
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Load Single Immediate with Update LSIU
(mem32, error) ← Load32(vAddr)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
FR[t] ← mem32
AS[s] ← vAddr

endif

Exceptions

Memory Load Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option
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LSX Load Single Indexed
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

LSX fr, as, at

Description

LSX is a 32-bit load from memory to the floating-point register file. It forms a virtual 
address by adding the contents of address register as and the contents of address 
register at. 32 bits (four bytes) are read from the physical address. This data is then 
written to floating-point register fr.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

Operation

vAddr ← AR[s] + (AR[t])
(mem32, error) ← Load32(vAddr)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
FR[r] ← mem32

endif

23 20 19 16 15 12 11 8 7 4 3 0
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Load Single Indexed LSX
Exceptions

Memory Load Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option
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LSXU Load Single Indexed with Update
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

LSXU fr, as, at

Description

LSXU is a 32-bit load from memory to the floating-point register file with base address 
register update. It forms a virtual address by adding the contents of address register as 
and the contents of address register at. 32 bits (four bytes) are read from the physical 
address. This data is then written to floating-point register fr and the virtual address is 
written back to address register as.

If the Region Translation Option (page 156) or the MMU Option (page 158)is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

Operation

vAddr ← AR[s] + (AR[t])
(mem32, error) ← Load32(vAddr)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
FR[r] ← mem32
AR[s] ← vAddr

endif

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 1 1 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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Load Single Indexed with Update LSXU
Exceptions

Memory Load Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option
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MADD.S Multiply and Add Single
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

MADD.S fr, fs, ft

Description

Using IEEE754 single-precision arithmetic, MADD.S multiplies the contents of floating-
point registers fs and ft, adds the product to the contents of floating-point register fr, 
and then writes the sum back to floating-point register fr. The computation is performed 
with no intermediate round.

Operation

FR[r] ← FR[r] +s (FR[s] ×s FR[t]) (×s does not round)

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 1 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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Maximum Value MAX
Instruction Word (RRR)

Required Configuration Option

Miscellaneous Operations Option (See Section 4.3.8 on page 62)

Assembler Syntax

MAX ar, as, at

Description

MAX computes the maximum of the twos complement contents of address registers as 
and at and writes the result to address register ar.

Operation

AR[r] ← if AR[s] < AR[t] then AR[t] else AR[s]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 0 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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MAXU Maximum Value Unsigned
Instruction Word (RRR)

Required Configuration Option

Miscellaneous Operations Option (See Section 4.3.8 on page 62)

Assembler Syntax

MAXU ar, as, at

Description

MAXU computes the maximum of the unsigned contents of address registers as and at 
and writes the result to address register ar.

Operation

AR[r] ← if (0||AR[s]) < (0||AR[t]) then AR[t] else AR[s]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 1 1 0 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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Memory Wait MEMW
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

MEMW

Description

MEMW ensures that all previous load, store, acquire, release, prefetch, and cache instruc-
tions perform before performing any subsequent load, store, acquire, release, prefetch, 
or cache instructions. MEMW is intended to implement the volatile attribute of lan-
guages such as C and C++. The compiler should separate all volatile loads and 
stores with a MEMW instruction. ISYNC should be used to cause instruction fetches to 
wait as MEMW will have no effect on them.

On processor/system implementations that always reference memory in program order, 
MEMW may be a no-op. Implementations that reorder load, store, or cache instructions, or 
which perform merging of stores (for example, in a write buffer) must order such memo-
ry references so that all memory references executed before MEMW are performed before 
any memory references that are executed after MEMW.

Because the instruction execution pipeline is implementation-specific, the operation 
section below specifies only a call to the implementation’s memw function.

Operation

memw()

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0

4 4 4 4 4 4
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MIN Minimum Value
Instruction Word (RRR)

Required Configuration Option

Miscellaneous Operations Option (See Section 4.3.8 on page 62)

Assembler Syntax

MIN ar, as, at

Description

MIN computes the minimum of the twos complement contents of address registers as 
and at and writes the result to address register ar.

Operation

AR[r] ← if AR[s] < AR[t] then AR[s] else AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 0 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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Minimum Value Unsigned MINU
Instruction Word (RRR)

Required Configuration Option

Miscellaneous Operations Option (See Section 4.3.8 on page 62)

Assembler Syntax

MINU ar, as, at

Description

MINU computes the minimum of the unsigned contents of address registers as and at, 
and writes the result to address register ar.

Operation

AR[r] ← if (0||AR[s]) < (0||AR[t]) then AR[s] else AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 1 0 0 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
Xtensa Instruction Set Architecture (ISA) Reference Manual 411



MOV Move
Instruction Word (RRR)

Required Configuration Option

Assembler Macro

Assembler Syntax

MOV ar, as

Description

MOV is an assembler macro that uses the OR instruction (page 466) to move the contents 
of address register as to address register ar. The assembler input

MOV ar, as

expands into

OR ar, as, as

ar and as should not specify the same register due to the MOV.N restriction.

Assembler Note

The assembler may convert MOV instructions to MOV.N when the Code Density Option is 
enabled. Prefixing the MOV instruction with an underscore (_MOV) disables this optimiza-
tion and forces the assembler to generate the OR form of the instruction.

Operation

AR[r] ← AR[s]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 0 0 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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Narrow Move MOV.N
Instruction Word (RRRN)

Required Configuration Option

Code Density Option (See Section 4.3.1 on page 53)

Assembler Syntax

MOV.N at, as

Description

MOV.N is similar in function to the assembler macro MOV, but has a 16-bit encoding. 
MOV.N moves the contents of address register as to address register at.

The operation of the processor when at and as specify the same register is undefined 
and reserved for future use.

Assembler Note

The assembler may convert MOV.N instructions to MOV. Prefixing the MOV.N instruction 
with an underscore (_MOV.N) disables this optimization and forces the assembler to 
generate the narrow form of the instruction.

Operation

AR[t] ← AR[s]

Exceptions

EveryInstR Group (see page 244)

15 12 11 8 7 4 3 0

0 0 0 0 s t 1 1 0 1

4 4 4 4
Xtensa Instruction Set Architecture (ISA) Reference Manual 413



MOV.S Move Single
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

MOV.S fr, fs

Description

MOV.S moves the contents of floating-point register fs to floating-point register fr. The 
move is non-arithmetic; no floating-point exceptions are raised.

Operation

FR[r] ← FR[s]

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 1 0 1 0 r s 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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Move if Equal to Zero MOVEQZ
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

MOVEQZ ar, as, at

Description

MOVEQZ performs a conditional move if equal to zero. If the contents of address register 
at are zero, then the processor sets address register ar to the contents of address reg-
ister as. Otherwise, MOVEQZ performs no operation and leaves address register ar 
unchanged.

The inverse of MOVEQZ is MOVNEZ.

Operation

if AR[t] = 032 then
AR[r] ← AR[s]

endif

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 0 0 0 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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MOVEQZ.S Move Single if Equal to Zero
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

MOVEQZ.S fr, fs, at

Description

MOVEQZ.S is a conditional move between floating-point registers based on the value in 
an address register. If address register at contains zero, the contents of floating-point 
register fs are written to floating-point register fr. MOVEQZ.S is non-arithmetic; no 
floating-point exceptions are raised.

The inverse of MOVEQZ.S is MOVNEZ.S.

Operation

if AR[t] = 032 then
FR[r] ← FR[s]

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 0 0 0 1 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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Move if False MOVF
Instruction Word (RRR)

Required Configuration Option

Boolean Option (See Section 4.3.10 on page 65)

Assembler Syntax

MOVF ar, as, bt

Description

MOVF moves the contents of address register as to address register ar if Boolean regis-
ter bt is false. Address register ar is left unchanged if Boolean register bt is true.

The inverse of MOVF is MOVT.

Operation

if not BRt then
AR[r] ← AR[s]

endif

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 1 0 0 0 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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MOVF.S Move Single if False
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

MOVF.S fr, fs, bt

Description

MOVF.S is a conditional move between floating-point registers based on the value in a 
Boolean register. If Boolean register bt contains zero, the contents of floating-point reg-
ister fs are written to floating-point register fr. MOVF.S is non-arithmetic; no floating-
point exceptions are raised.

The inverse of MOVF.S is MOVT.S.

Operation

if not BRt then
FR[r] ← FR[s]

endif

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 0 0 1 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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Move if Greater Than or Equal to Zero MOVGEZ
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

MOVGEZ ar, as, at

Description

MOVGEZ performs a conditional move if greater than or equal to zero. If the contents of 
address register at are greater than or equal to zero (that is, the most significant bit is 
clear), then the processor sets address register ar to the contents of address register 
as. Otherwise, MOVGEZ performs no operation and leaves address register ar 
unchanged.

The inverse of MOVGEZ is MOVLTZ.

Operation

if AR[t]31 = 0 then
AR[r] ← AR[s]

endif

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 1 1 0 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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MOVGEZ.S Move Single if Greater Than or Eq Zero
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

MOVGEZ.S fr, fs, at

Description

MOVGEZ.S is a conditional move between floating-point registers based on the value in 
an address register. If the contents of address register at is greater than or equal to 
zero (that is, the most significant bit is clear), the contents of floating-point register fs 
are written to floating-point register fr. MOVGEZ.S is non-arithmetic; no floating-point 
exceptions are raised.

The inverse of MOVGEZ.S is MOVLTZ.S.

Operation

if AR[t]31 = 0 then
FR[r] ← FR[s]

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 0 1 1 1 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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Move Immediate MOVI
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

MOVI at, -2048..2047

Description

MOVI sets address register at to a constant in the range -2048..2047 encoded in the 
instruction word. The constant is stored in two non-contiguous fields of the instruction 
word. The processor decodes the constant specification by concatenating the two fields 
and sign-extending the 12-bit value.

Assembler Note

The assembler will convert MOVI instructions into a literal load when given an immediate 
operand that evaluates to a value outside the range -2048..2047. The assembler will 
convert MOVI instructions to MOVI.N when the Code Density Option is enabled and the 
immediate operand falls within the available range. Prefixing the MOVI instruction with 
an underscore (_MOVI) disables these features and forces the assembler to generate 
an error for the first case and the wide form of the instruction for the second case.

Operation

AR[t] ← imm1211
20||imm12

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

imm12b7..0 1 0 1 0 imm12b11..8 t 0 0 1 0

8 4 4 4 4
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MOVI.N Narrow Move Immediate
Instruction Word (RI7)

Required Configuration Option

Code Density Option (See Section 4.3.1 on page 53)

Assembler Syntax

MOVI.N as, -32..95

Description

MOVI.N is similar to MOVI, but has a 16-bit encoding and supports a smaller range of 
constant values encoded in the instruction word.

MOVI.N sets address register as to a constant in the range -32..95 encoded in the 
instruction word. The constant is stored in two non-contiguous fields of the instruction 
word. The range is asymmetric around zero because positive constants are more fre-
quent than negative constants. The processor decodes the constant specification by 
concatenating the two fields and sign-extending the 7-bit value with the logical and of its 
two most significant bits.

Assembler Note

The assembler may convert MOVI.N instructions to MOVI. Prefixing the MOVI.N instruc-
tion with an underscore (_MOVI.N) disables this optimization and forces the assembler 
to generate the narrow form of the instruction.

Operation

AR[s] ← (imm76 and imm75)
25||imm7

Exceptions

EveryInstR Group (see page 244)

15 12 11 8 7 6 4 3 0

imm73..0 s 0 imm76..4 1 1 0 0

4 4 4 4
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Move if Less Than Zero MOVLTZ
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

MOVLTZ ar, as, at

Description

MOVLTZ performs a conditional move if less than zero. If the contents of address register 
at are less than zero (that is, the most significant bit is set), then the processor sets ad-
dress register ar to the contents of address register as. Otherwise, MOVLTZ performs 
no operation and leaves address register ar unchanged.

The inverse of MOVLTZ is MOVGEZ.

Operation

if AR[t]31 ≠ 0 then
AR[r] ← AR[s]

endif

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 1 0 0 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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MOVLTZ.S Move Single if Less Than Zero
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

MOVLTZ.S fr, fs, at

Description

MOVLTZ.S is a conditional move between floating-point registers based on the value in 
an address register. If the contents of address register at is less than zero (that is, the 
most significant bit is set), the contents of floating-point register fs are written to float-
ing-point register fr. MOVLTZ.S is non-arithmetic; no floating-point exceptions are 
raised.

The inverse of MOVLTZ.S is MOVGEZ.S.

Operation

if AR[t]31 ≠ 0 then
FR[r] ← FR[s]

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 0 1 0 1 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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Move if Not-Equal to Zero MOVNEZ
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

MOVNEZ ar, as, at

Description

MOVNEZ performs a conditional move if not equal to zero. If the contents of address reg-
ister at are non-zero, then the processor sets address register ar to the contents of ad-
dress register as. Otherwise, MOVNEZ performs no operation and leaves address 
register ar unchanged.

The inverse of MOVNEZ is MOVEQZ.

Operation

if AR[t] ≠ 032 then
AR[r] ← AR[s]

endif

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 0 1 0 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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MOVNEZ.S Move Single if Not Equal to Zero
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

MOVNEZ.S fr, fs, at

Description

MOVNEZ.S is a conditional move between floating-point registers based on the value in 
an address register. If the contents of address register at is non-zero, the contents of 
floating-point register fs are written to floating-point register fr. MOVNEZ.S is non-arith-
metic; no floating-point exceptions are raised.

The inverse of MOVNEZ.S is MOVEQZ.S.

Operation

if AR[t] ≠ 032 then
FR[r] ← FR[s]

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 0 0 1 1 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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Move to Stack Pointer MOVSP
Instruction Word (RRR)

Required Configuration Option

Windowed Register Option (See Section 4.7.1 on page 180)

Assembler Syntax

MOVSP at, as

Description

MOVSP provides an atomic window check and register-to-register move. If the caller’s 
registers are present in the register file, this instruction simply moves the contents of 
address register as to address register at. If the caller’s registers are not present, 
MOVSP raises an Alloca exception.

MOVSP is typically used to perform variable-size stack frame allocation. The Xtensa ABI 
specifies that the caller’s a0-a3 may be stored just below the callee’s stack pointer. 
When the stack frame is extended, these values may need to be moved. They can only 
be moved with interrupts and exceptions disabled. This instruction provides a mecha-
nism to test if they must be moved, and if so, to raise an exception to move the data with 
interrupts and exceptions disabled. The Xtensa ABI also requires that the caller’s return 
address be in a0 when MOVSP is executed.

Operation

if WindowStartWindowBase-0011..WindowBase-0001 = 03 then
Exception (AllocaCause)

else
AR[t] ← AR[s]

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(AllocaCause) if Windowed Register Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 0 1 s t 0 0 0 0

4 4 4 4 4 4
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MOVT Move if True
Instruction Word (RRR)

Required Configuration Option

Boolean Option (See Section 4.3.10 on page 65)

Assembler Syntax

MOVT ar, as, bt

Description

MOVT moves the contents of address register as to address register ar if Boolean regis-
ter bt is true. Address register ar is left unchanged if Boolean register bt is false.

The inverse of MOVT is MOVF.

Operation

if BRt then
AR[r] ← AR[s]

endif

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 1 0 1 0 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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Move Single if True MOVT.S
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

MOVT.S fr, fs, bt

Description

MOVT.S is a conditional move between floating-point registers based on the value in a 
Boolean register. If Boolean register bt is set, the contents of floating-point register fs 
are written to floating-point register fr. MOVT.S is non-arithmetic; no floating-point 
exceptions are raised.

The inverse of MOVT.S is MOVF.S.

Operation

if BRt then
FR[r] ← FR[s]

endif

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 0 1 1 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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MSUB.S Multiply and Subtract Single
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

MSUB.S fr, fs, ft

Description

MSUB.S multiplies the contents of floating-point registers fs and ft, subtracts the prod-
uct from the contents of floating-point register fr, and then writes the difference back to 
floating-point register fr. The computation is performed with no intermediate round.

Operation

FR[r] ← FR[r] −s (FR[s] ×s FR[t]) (×s does not round)

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 1 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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Signed Multiply MUL.AA.*
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MUL.AA.* as, at

Where * expands as follows:
MUL.AA.LL - for (half=0)
MUL.AA.HL - for (half=1)
MUL.AA.LH - for (half=2)
MUL.AA.HH - for (half=3)

Description

MUL.AA.* performs a two’s complement multiply of half of each of the address registers 
as and at, producing a 32-bit result. The result is sign-extended to 40 bits and written to 
the MAC16 accumulator.

Operation

m1 ← if half0 then AR[s]31..16 else AR[s]15..0
m2 ← if half1 then AR[t]31..16 else AR[t]15..0
ACC ← (m115

24||m1) × (m21524||m2)

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 1 1 0 1 half 0 0 0 0 s t 0 1 0 0

4 4 4 4 4 4
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MUL.AD.* Signed Multiply
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MUL.AD.* as, my

Where * expands as follows:
MUL.AD.LL - for (half=0)
MUL.AD.HL - for (half=1)
MUL.AD.LH - for (half=2)
MUL.AD.HH - for (half=3)

Description

MUL.AD.* performs a two’s complement multiply of half of address register as and half 
of MAC16 register my, producing a 32-bit result. The result is sign-extended to 40 bits 
and written to the MAC16 accumulator. The my operand can designate either MAC16 
register m2 or m3.

Operation

m1 ← if half0 then AR[s]31..16 else AR[s]15..0
m2 ← if half1 then MR[1||y]31..16 else MR[1||y]15..0
ACC ← (m115

24||m1) × (m21524||m2)

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 1 0 1 half 0 0 0 0 s 0 y 0 0 0 1 0 0

4 4 4 4 4 4
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Signed Multiply MUL.DA.*
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MUL.DA.* mx, at

Where * expands as follows:
MUL.DA.LL - for (half=0)
MUL.DA.HL - for (half=1)
MUL.DA.LH - for (half=2)
MUL.DA.HH - for (half=3)

Description

MUL.DA.* performs a two’s complement multiply of half of MAC16 register mx and half 
of address register at, producing a 32-bit result. The result is sign-extended to 40 bits 
and written to the MAC16 accumulator. The mx operand can designate either MAC16 
register m0 or m1.

Operation

m1 ← if half0 then MR[0||x]31..16 else MR[0||x]15..0
m2 ← if half1 then AR[t]31..16 else AR[t]15..0
ACC ← (m115

24||m1) × (m21524||m2)

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 1 0 0 1 half 0 x 0 0 0 0 0 0 t 0 1 0 0

4 4 4 4 4 4
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MUL.DD.* Signed Multiply
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MUL.DD.* mx, my

Where * expands as follows:
MUL.DD.LL - for (half=0)
MUL.DD.HL - for (half=1) 
MUL.DD.LH - for (half=2) 
MUL.DD.HH - for (half=3) 

Description

MUL.DD.* performs a two’s complement multiply of half of the MAC16 registers mx and 
my, producing a 32-bit result. The result is sign-extended to 40 bits and written to the 
MAC16 accumulator. The mx operand can designate either MAC16 register m0 or m1. 
The my operand can designate either MAC16 register m2 or m3.

Operation

m1 ← if half0 then MR[0||x]31..16 else MR[0||x]15..0
m2 ← if half1 then MR[1||y]31..16 else MR[1||y]15..0
ACC ← (m115

24||m1) × (m21524||m2)

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 0 0 1 half 0 x 0 0 0 0 0 0 0 y 0 0 0 1 0 0

4 4 4 4 4 4
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Multiply Single MUL.S
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

MUL.S fr, fs, ft

Description

MUL.S computes the IEEE754 single-precision product of the contents of floating-point 
registers fs and ft and writes the result to floating-point register fr.

Operation

FR[r] ← FR[s] ×s FR[t]

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 0 1 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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MUL16S Multiply 16-bit Signed
Instruction Word (RRR)

Required Configuration Option

16-bit Integer Multiply Option (See Section 4.3.4 on page 57)

Assembler Syntax

MUL16S ar, as, at

Description

MUL16S performs a two’s complement multiplication of the least-significant 16 bits of the 
contents of address registers as and at and writes the 32-bit product to address regis-
ter ar.

Operation

AR[r] ← (AR[s]15
16||AR[s]15..0) × (AR[t]1516||AR[t]15..0)

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 1 0 1 0 0 0 1 r s t 0 0 0 0

4 4 4 4 4 4
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Multiply 16-bit Unsigned MUL16U
Instruction Word (RRR)

Required Configuration Option

16-bit Integer Multiply Option (See Section 4.3.4 on page 57)

Assembler Syntax

MUL16U ar, as, at

Description

MUL16U performs an unsigned multiplication of the least-significant 16 bits of the con-
tents of address registers as and at and writes the 32-bit product to address register 
ar.

Operation

AR[r] ← (016||AR[s]15..0) × (016||AR[t]15..0)

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 1 0 0 0 0 0 1 r s t 0 0 0 0

4 4 4 4 4 4
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MULA.AA.* Signed Multiply/Accumulate
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MULA.AA.* as, at

Where * expands as follows:
MULA.AA.LL - for (half=0) 
MULA.AA.HL - for (half=1) 
MULA.AA.LH - for (half=2) 
MULA.AA.HH - for (half=3) 

Description

MULA.AA.* performs a two’s complement multiply of half of each of the address regis-
ters as and at, producing a 32-bit result. The result is sign-extended to 40 bits and add-
ed to the contents of the MAC16 accumulator.

Operation

m1 ← if half0 then AR[s]31..16 else AR[s]15..0
m2 ← if half1 then AR[t]31..16 else AR[t]15..0
ACC ← ACC + (m11524||m1) × (m21524||m2)

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 1 1 1 0 half 0 0 0 0 s t 0 1 0 0

4 4 4 4 4 4
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Signed Multiply/Accumulate MULA.AD.*
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MULA.AD.* as, my

Where * expands as follows:
MULA.AD.LL - for (half=0) 
MULA.AD.HL - for (half=1) 
MULA.AD.LH - for (half=2) 
MULA.AD.HH - for (half=3) 

Description

MULA.AD.* performs a two’s complement multiply of half of address register as and 
half of MAC16 register my, producing a 32-bit result. The result is sign-extended to 40 
bits and added to the contents of the MAC16 accumulator. The my operand can desig-
nate either MAC16 register m2 or m3.

Operation

m1 ← if half0 then AR[s]31..16 else AR[s]15..0
m2 ← if half1 then MR[1||y]31..16 else MR[1||y]15..0
ACC ← ACC + (m11524||m1) × (m21524||m2)

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 1 1 0 half 0 0 0 0 s 0 y 0 0 0 1 0 0

4 4 4 4 4 4
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MULA.DA.* Signed Multiply/Accumulate
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MULA.DA.* mx, at

Where * expands as follows:
MULA.DA.LL - for (half=0) 
MULA.DA.HL - for (half=1) 
MULA.DA.LH - for (half=2) 
MULA.DA.HH - for (half=3) 

Description

MULA.DA.* performs a two’s complement multiply of half of MAC16 register mx and half 
of address register at, producing a 32-bit result. The result is sign-extended to 40 bits 
and added to the contents of the MAC16 accumulator. The mx operand can designate 
either MAC16 register m0 or m1.

Operation

m1 ← if half0 then MR[0||x]31..16 else MR[0||x]15..0
m2 ← if half1 then AR[t]31..16 else AR[t]15..0
ACC ← ACC + (m11524||m1) × (m21524||m2)

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 1 0 1 0 half 0 x 0 0 0 0 0 0 t 0 1 0 0

4 4 4 4 4 4
440 Xtensa Instruction Set Architecture (ISA) Reference Manual



Signed Mult/Accum, Ld/Autodec MULA.DA.*.LDDEC
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MULA.DA.*.LDDEC mw, as, mx, at

Where * expands as follows:
MULA.DA.LL.LDDEC - for (half=0) 
MULA.DA.HL.LDDEC - for (half=1) 
MULA.DA.LH.LDDEC - for (half=2) 
MULA.DA.HH.LDDEC - for (half=3) 

Description

MULA.DA.*.LDDEC performs a parallel load and multiply/accumulate.

First, it performs a two’s complement multiply of half of MAC16 register mx and half of 
address register at, producing a 32-bit result. The result is sign-extended to 40 bits and 
added to the contents of the MAC16 accumulator. The mx operand can designate either 
MAC16 register m0 or m1.

Next, it loads MAC16 register mw from memory using auto-decrement addressing. It 
forms a virtual address by subtracting 4 from the contents of address register as. Thirty-
two bits (four bytes) are read from the physical address. This data is then written to 
MAC16 register mw, and the virtual address is written back to address register as. The 
mw operand can designate any of the four MAC16 registers.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 1 0 half 0 x w s t 0 1 0 0

4 4 4 4 4 4
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MULA.DA.*.LDDEC Signed Mult/Accum, Ld/Autodec
Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

The MAC16 register source mx and the MAC16 register destination mw may be the 
same. In this case, the instruction uses the contents of mx as the source operand prior to 
loading mx with the load data.

Operation

vAddr ← AR[s] − 4
(mem32, error) ← Load32(vAddr)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
m1 ← if half0 then MR[0||x]31..16 else MR[0||x]15..0
m2 ← if half1 then AR[t]31..16 else AR[t]15..0
ACC ← ACC + (m11524||m1) × (m21524||m2)
AR[s] ← vAddr
MR[w] ← mem32

endif

Exceptions

Memory Load Group (see page 244)
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Signed Mult/Accum, Ld/Autoinc MULA.DA.*.LDINC
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MULA.DA.*.LDINC mw, as, mx, at

Where * expands as follows:
MULA.DA.LL.LDINC - for (half=0) 
MULA.DA.HL.LDINC - for (half=1) 
MULA.DA.LH.LDINC - for (half=2) 
MULA.DA.HH.LDINC - for (half=3) 

Description

MULA.DA.*.LDINC performs a parallel load and multiply/accumulate.

First, it performs a two’s complement multiply of half of MAC16 register mx and half of 
address register at, producing a 32-bit result. The result is sign-extended to 40 bits and 
added to the contents of the MAC16 accumulator. The mx operand can designate either 
MAC16 register m0 or m1.

Next, it loads MAC16 register mw from memory using auto-increment addressing. It 
forms a virtual address by adding 4 to the contents of address register as. 32 bits (four 
bytes) are read from the physical address. This data is then written to MAC16 register 
mw, and the virtual address is written back to address register as. The mw operand can 
designate any of the four MAC16 registers.

If the Region Translation Option (page 156) or the MMU Option (page 158)is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 1 0 half 0 x w s t 0 1 0 0

4 4 4 4 4 4
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MULA.DA.*.LDINC Signed Mult/Accum, Ld/Autoinc
Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

The MAC16 register source mx and the MAC16 register destination mw may be the 
same. In this case, the instruction uses the contents of mx as the source operand prior to 
loading mx with the load data.

Operation

vAddr ← AR[s] + 4
(mem32, error) ← Load32(vAddr)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
m1 ← if half0 then MR[0||x]31..16 else MR[0||x]15..0
m2 ← if half1 then AR[t]31..16 else AR[t]15..0
ACC ← ACC + (m11524||m1) × (m21524||m2)
AR[s] ← vAddr
MR[w] ← mem32

endif

Exceptions

Memory Load Group (see page 244)
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Signed Multiply/Accumulate MULA.DD.*
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MULA.DD.* mx, my

Where * expands as follows:
MULA.DD.LL - for (half=0) 
MULA.DD.HL - for (half=1) 
MULA.DD.LH - for (half=2) 
MULA.DD.HH - for (half=3) 

Description

MULA.DD.* performs a two’s complement multiply of half of each of the MAC16 regis-
ters mx and my, producing a 32-bit result. The result is sign-extended to 40 bits and add-
ed to the contents of the MAC16 accumulator. The mx operand can designate either 
MAC16 register m0 or m1. The my operand can designate either MAC16 register m2 or 
m3.

Operation

m1 ← if half0 then MR[0||x]31..16 else MR[0||x]15..0
m2 ← if half1 then MR[1||y]31..16 else MR[1||y]15..0
ACC ← ACC + (m11524||m1) × (m21524||m2)

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 0 1 0 half 0 x 0 0 0 0 0 0 0 y 0 0 0 1 0 0

4 4 4 4 4 4
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MULA.DD.*.LDDEC Signed Mult/Accum, Ld/Autodec
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MULA.DD.*.LDDEC mw, as, mx, my

Where * expands as follows:
MULA.DD.LL.LDDEC - for (half=0) 
MULA.DD.HL.LDDEC - for (half=1) 
MULA.DD.LH.LDDEC - for (half=2) 
MULA.DD.HH.LDDEC - for (half=3) 

Description

MULA.DD.*.LDDEC performs a parallel load and multiply/accumulate.

First, it performs a two’s complement multiply of half of the MAC16 registers mx and my, 
producing a 32-bit result. The result is sign-extended to 40 bits and added to the con-
tents of the MAC16 accumulator. The mx operand can designate either MAC16 register 
m0 or m1. The my operand can designate either MAC16 register m2 or m3.

Next, it loads MAC16 register mw from memory using auto-decrement addressing. It 
forms a virtual address by subtracting 4 from the contents of address register as. Thirty-
two bits (four bytes) are read from the physical address. This data is then written to 
MAC16 register mw, and the virtual address is written back to address register as. The 
mw operand can designate any of the four MAC16 registers.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 1 1 0 half 0 x w s 0 y 0 0 0 1 0 0

4 4 4 4 4 4
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Signed Mult/Accum, Ld/Autodec MULA.DD.*.LDDEC
Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

The MAC16 register destination mw may be the same as either MAC16 register source 
mx or my. In this case, the instruction uses the contents of mx and my as the source oper-
ands prior to loading mw with the load data.

Operation

vAddr ← AR[s] − 4
(mem32, error) ← Load32(vAddr)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
m1 ← if half0 then MR[0||x]31..16 else MR[0||x]15..0
m2 ← if half1 then MR[1||y]31..16 else MR[1||y]15..0
ACC ← ACC + (m11524||m1) × (m21524||m2)
AR[s] ← vAddr
MR[w] ← mem32

endif

Exceptions

Memory Load Group (see page 244)
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MULA.DD.*.LDINC Signed Mult/Accum, Ld/Autoinc
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MULA.DD.*.LDINC mw, as, mx, my

Where * expands as follows:
MULA.DD.LL.LDINC - for (half=0) 
MULA.DD.HL.LDINC - for (half=1) 
MULA.DD.LH.LDINC - for (half=2) 
MULA.DD.HH.LDINC - for (half=3) 

Description

MULA.DD.*.LDINC performs a parallel load and multiply/accumulate.

First, it performs a two’s complement multiply of half of each of the MAC16 registers mx 
and my, producing a 32-bit result. The result is sign-extended to 40 bits and added to the 
contents of the MAC16 accumulator. The mx operand can designate either MAC16 reg-
ister m0 or m1. The my operand can designate either MAC16 register m2 or m3.

Next, it loads MAC16 register mw from memory using auto-increment addressing. It 
forms a virtual address by adding 4 to the contents of address register as. Thirty-two 
bits (four bytes) are read from the physical address. This data is then written to MAC16 
register mw, and the virtual address is written back to address register as. The mw oper-
and can designate any of the four MAC16 registers.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 1 0 half 0 x w s 0 y 0 0 0 1 0 0

4 4 4 4 4 4
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Signed Mult/Accum, Ld/Autoinc MULA.DD.*.LDINC
Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

The MAC16 register destination mw may be the same as either MAC16 register source 
mx or my. In this case, the instruction uses the contents of mx and my as the source 
operands prior to loading mw with the load data.

Operation

vAddr ← AR[s] + 4
(mem32, error) ← Load32(vAddr)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreErrorCause)

else
m1 ← if half0 then MR[0||x]31..16 else MR[0||x]15..0
m2 ← if half1 then MR[1||y]31..16 else MR[1||y]15..0
ACC ← ACC + (m11524||m1) × (m21524||m2)
AR[s] ← vAddr
MR[w] ← mem32

endif

Exceptions

Memory Load Group (see page 244)
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MULL Multiply Low
Instruction Word (RRR)

Required Configuration Option

32-bit Integer Multiply Option (See Section 4.3.5 on page 58)

Assembler Syntax

MULL ar, as, at

Description

MULL performs a 32-bit multiplication of the contents of address registers as and at, 
and writes the least significant 32 bits of the product to address register ar. Because the 
least significant product bits are unaffected by the multiplicand and multiplier sign, MULL 
is useful for both signed and unsigned multiplication.

Operation

AR[r] ← AR[s] × AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 0 0 0 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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Signed Multiply/Subtract MULS.AA.*
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MULS.AA.* as, at

Where * expands as follows:
MULS.AA.LL - for (half=0) 
MULS.AA.HL - for (half=1) 
MULS.AA.LH - for (half=2) 
MULS.AA.HH - for (half=3) 

Description

MULS.AA.* performs a two’s complement multiply of half of each of the address regis-
ters as and at, producing a 32-bit result. The result is sign-extended to 40 bits and 
subtracted from the contents of the MAC16 accumulator.

Operation

m1 ← if half0 then AR[s]31..16 else AR[s]15..0
m2 ← if half1 then AR[t]31..16 else AR[t]15..0
ACC ← ACC − (m11524||m1) × (m21524||m2)

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 1 1 1 1 half 0 0 0 0 s t 0 1 0 0

4 4 4 4 4 4
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MULS.AD.* Signed Multiply/Subtract
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MULS.AD.* as, my

Where * expands as follows:
MULS.AD.LL - for (half=0) 
MULS.AD.HL - for (half=1) 
MULS.AD.LH - for (half=2) 
MULS.AD.HH - for (half=3) 

Description

MULS.AD.* performs a two’s complement multiply of half of address register as and 
half of MAC16 register my, producing a 32-bit result. The result is sign-extended to 40 
bits and subtracted from the contents of the MAC16 accumulator. The my operand can 
designate either MAC16 register m2 or m3.

Operation

m1 ← if half0 then AR[s]31..16 else AR[s]15..0
m2 ← if half1 then MR[1||y]31..16 else MR[1||y]15..0
ACC ← ACC − (m11524||m1) × (m21524||m2)

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 1 1 1 half 0 0 0 0 s 0 y 0 0 0 1 0 0

4 4 4 4 4 4
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Signed Multiply/Subtract MULS.DA.*
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MULS.DA.* mx, at

Where * expands as follows:
MULS.DA.LL - for (half=0) 
MULS.DA.HL - for (half=1) 
MULS.DA.LH - for (half=2) 
MULS.DA.HH - for (half=3) 

Description

MULS.DA.* performs a two’s complement multiply of half of MAC16 register mx and half 
of address register at, producing a 32-bit result. The result is sign-extended to 40 bits 
and subtracted from the contents of the MAC16 accumulator. The mx operand can 
designate either MAC16 register m0 or m1.

Operation

m1 ← if half0 then MR[0||x]31..16 else MR[0||x]15..0
m2 ← if half1 then AR[t]31..16 else AR[t]15..0
ACC ← ACC − (m11524||m1) × (m21524||m2)

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 1 0 1 1 half 0 x 0 0 0 0 0 0 t 0 1 0 0

4 4 4 4 4 4
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MULS.DD.* Signed Multiply/Subtract
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

MULS.DD.* mx, my

Where * expands as follows:
MULS.DD.LL - for (half=0) 
MULS.DD.HL - for (half=1) 
MULS.DD.LH - for (half=2) 
MULS.DD.HH - for (half=3) 

Description

MULS.DD.* performs a two’s complement multiply of half of each of MAC16 registers 
mx and my, producing a 32-bit result. The result is sign-extended to 40 bits and subtract-
ed from the contents of the MAC16 accumulator. The mx operand can designate either 
MAC16 register m0 or m1. The my operand can designate either MAC16 register m2 or 
m3.

Operation

m1 ← if half0 then MR[0||x]31..16 else MR[0||x]15..0
m2 ← if half1 then MR[1||y]31..16 else MR[1||y]15..0
ACC ← ACC − (m11524||m1) × (m21524||m2)

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 0 1 1 half 0 x 0 0 0 0 0 0 0 y 0 0 0 1 0 0

4 4 4 4 4 4
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Multiply Signed High MULSH
Instruction Word (RRR)

Required Configuration Option

32-bit Integer Multiply Option (See Section 4.3.5 on page 58)

Assembler Syntax

MULSH ar, as, at

Description

MULSH performs a 32-bit two’s complement multiplication of the contents of address reg-
isters as and at and writes the most significant 32 bits of the product to address register 
ar.

Operation

tp ← (AR[s]31
32||AR[s]) × (AR[t]3132||AR[t])

AR[r] ← tp63..32

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 1 1 0 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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MULUH Multiply Unsigned High
Instruction Word (RRR)

Required Configuration Option

32-bit Integer Multiply Option (See Section 4.3.5 on page 58)

Assembler Syntax

MULUH ar, as, at

Description

MULUH performs an unsigned multiplication of the contents of address registers as and 
at, and writes the most significant 32 bits of the product to address register ar.

Operation

tp ← (032||AR[s]) × (032||AR[t])
AR[r] ← tp63..32

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 1 0 0 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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Negate NEG
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

NEG ar, at

Description

NEG calculates the two’s complement negation of the contents of address register at 
and writes it to address register ar. Arithmetic overflow is not detected.

Operation

AR[r] ← 0 − AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 1 0 0 0 0 0 r 0 0 0 0 t 0 0 0 0

4 4 4 4 4 4
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NEG.S Negate Single
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

NEG.S fr, fs

Description

NEG.S negates the single-precision value of the contents of floating-point register fs 
and writes the result to floating-point register fr.

Operation

FR[r] ← −s FR[s]

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 1 0 1 0 r s 0 1 1 0 0 0 0 0

4 4 4 4 4 4
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No-Operation NOP
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

NOP

Description

This instruction performs no operation. It is typically used for instruction alignment. NOP 
is a 24-bit instruction. For a 16-bit version, see NOP.N. 

Assembler Note

The assembler may convert NOP instructions to NOP.N when the Code Density Option is 
enabled. Prefixing the NOP instruction with an underscore (_NOP) disables this optimiza-
tion and forces the assembler to generate the wide form of the instruction.

Operation

none

Exceptions

EveryInst Group (see page 244)

Implementation Notes

In some implementations NOP is not an instruction but only an assembler macro that 
uses the instruction “OR An, An, An” (with An a convenient register).

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0

4 4 4 4 4 4
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NOP.N Narrow No-Operation
Instruction Word (RRRN)

Required Configuration Option

Code Density Option (See Section 4.3.1 on page 53)

Assembler Syntax

NOP.N

Description

This instruction performs no operation. It is typically used for instruction alignment. 
NOP.N is a 16-bit instruction. For a 24-bit version, see NOP.

Assembler Note

The assembler may convert NOP.N instructions to NOP. Prefixing the NOP.N instruction 
with an underscore (_NOP.N) disables this optimization and forces the assembler to 
generate the narrow form of the instruction.

Operation

none

Exceptions

EveryInst Group (see page 244)

15 12 11 8 7 4 3 0

1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1

4 4 4 4
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Normalization Shift Amount NSA
Instruction Word (RRR)

Required Configuration Option

Miscellaneous Operations Option (See Section 4.3.8 on page 62)

Assembler Syntax

NSA at, as

Description

NSA calculates the left shift amount that will normalize the twos complement contents of 
address register as and writes this amount (in the range 0 to 31) to address register at. 
If as contains 0 or -1, NSA returns 31. Using SSL and SLL to shift as left by the NSA 
result yields the smallest value for which bits 31 and 30 differ unless as contains 0.

Operation

sign ← AR[s]31
if AR[s]30..0 = sign31 then

AR[t] ← 31
else

b4 ← AR[s]30..16 = sign15
t3 ← if b4 then AR[s]15..0 else AR[s]31..16
b3 ← t315..8 = sign8
t2 ← if b3 then t37..0 else t315..8
b2 ← t37..4 = sign4
t1 ← if b2 then t23..0 else t27..4
b1 ← t33..2 = sign2
b0 ← if b1 then t11 = sign else t13 = sign
AR[t] ← 027||((b4||b3||b2||b1||b0) − 1)

endif

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 0 0 0 0 1 1 1 0 s t 0 0 0 0

4 4 4 4 4 4
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NSAU Normalization Shift Amount Unsigned
Instruction Word (RRR)

Required Configuration Option

Miscellaneous Operations Option (See Section 4.3.8 on page 62)

Assembler Syntax

NSAU at, as

Description

NSAU calculates the left shift amount that will normalize the unsigned contents of 
address register as and writes this amount (in the range 0 to 32) to address register at. 
If as contains 0, NSAU returns 32. Using SSL and SLL to shift as left by the NSAU result 
yields the smallest value for which bit 31 is set, unless as contains 0.

Operation

if AR[s] = 032 then
AR[t] ← 32

else
b4 ← AR[s]31..16 = 016
t3 ← if b4 then AR[s]15..0 else AR[s]31..16
b3 ← t315..8 = 08
t2 ← if b3 then t37..0 else t315..8
b2 ← t27..4 = 04
t1 ← if b2 then t23..0 else t27..4
b1 ← t13..2 = 02
b0 ← if b1 then t11 = 0 else t13 = 0
AR[t] ← 027||b4||b3||b2||b1||b0

endif

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 0 0 0 0 1 1 1 1 s t 0 0 0 0

4 4 4 4 4 4
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Compare Single Equal OEQ.S
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

OEQ.S br, fs, ft

Description

OEQ.S compares the contents of floating-point registers fs and ft for IEEE754 equality. 
If the values are ordered and equal then Boolean register br is set to 1, otherwise br is 
set to 0. IEEE754 specifies that +0 and −0 compare as equal. IEEE754 floating-point 
values are ordered if neither is a NaN.

Operation

BRr ← not isNaN(FR[s]) and not isNaN(FR[t])
and (FR[s] =s FR[t])

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 0 1 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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OLE.S Compare Single Ord & Less Than or Equal
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

OLE.S br, fs, ft

Description

OLE.S compares the contents of floating-point registers fs and ft. If the contents of fs 
are ordered with, and less than or equal to the contents of ft, then Boolean register br 
is set to 1, otherwise br is set to 0. According to IEEE754, +0 and −0 compare as equal. 
IEEE754 floating-point values are ordered if neither is a NaN.

Operation

BRr ← not isNaN(FR[s]) and not isNaN(FR[t])
and (FR[s] ≤s FR[t])

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 1 0 1 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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Compare Single Ordered and Less Than OLT.S
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

OLT.S br, fs, ft

Description

OLT.S compares the contents of floating-point registers fs and ft. If the contents of fs 
are ordered with and less than the contents of ft then Boolean register br is set to 1, 
otherwise br is set to 0. According to IEEE754, +0 and −0 compare as equal. IEEE754 
floating-point values are ordered if neither is a NaN.

Operation

BRr ← not isNaN(FR[s]) and not isNaN(FR[t])
and (FR[s] <s FR[t])

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 1 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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OR Bitwise Logical Or
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

OR ar, as, at

Description

OR calculates the bitwise logical or of address registers as and at. The result is written 
to address register ar.

Operation

AR[r] ← AR[s] or AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 0 0 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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Boolean Or ORB
Instruction Word (RRR)

Required Configuration Option

Boolean Option (See Section 4.3.10 on page 65)

Assembler Syntax

ORB br, bs, bt

Description

ORB performs the logical or of Boolean registers bs and bt, and writes the result to 
Boolean register br.

When the sense of one of the source Booleans is inverted (0 → true, 1 → false), use 
ORBC. When the sense of both of the source Booleans is inverted, use ANDB and an 
inverted test of the result.

Operation

BRr ← BRs or BRt

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 0 0 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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ORBC Boolean Or with Complement
Instruction Word (RRR)

Required Configuration Option

Boolean Option (See Section 4.3.10 on page 65)

Assembler Syntax

ORBC br, bs, bt

Description

ORBC performs the logical or of Boolean register bs with the logical complement of 
Boolean register bt and writes the result to Boolean register br.

Operation

BRr ← BRs or not BRt

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 1 0 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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Probe Data TLB PDTLB
Instruction Word (RRR)

Required Configuration Option

Region Translation Option (page 156) or the MMU Option (page 158)

Assembler Syntax

PDTLB at, as

Description

PDTLB searches the data TLB for an entry that translates the virtual address in address 
register as and writes the way and index of that entry to address register at. If no entry 
matches, zero is written to the hit bit of at. The value written to at is implementation-
specific, but in all implementations a value with the hit bit set is suitable as an input to 
the IDTLB or WDTLB instructions. See Section 4.6 on page 138 for information on the re-
sult register formats for specific memory protection and translation options.

PDTLB is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
(match, vpn, ei, wi) ← ProbeDataTLB(AR[s])
if match > 1 then

EXCVADDR ← AR[s]
Exception (LoadStoreTLBMultiHit)

else
AR[t] ← PackDataTLBEntrySpec(match, vpn, ei, wi)

endif
endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(LoadStoreTLBMultiHitCause) if Region Protection Option or MMU Option
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 0 0 0 0 1 1 0 1 s t 0 0 0 0

4 4 4 4 4 4
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PITLB Probe Instruction TLB
Instruction Word (RRR)

Required Configuration Option

Region Translation Option (page 156) or the MMU Option (page 158)

Assembler Syntax

PITLB at, as

Description

PITLB searches the Instruction TLB for an entry that translates the virtual address in 
address register as and writes the way and index of that entry to address register at. If 
no entry matches, zero is written to the hit bit of at. The value written to at is implemen-
tation-specific, but in all implementations a value with the hit bit set is suitable as an in-
put to the IITLB or WITLB instructions. See Section 4.6 on page 138 for information on 
the result register formats for specific memory protection and translation options.

PITLB is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
(match, vpn, ei, wi) ← ProbeInstTLB(AR[s])
if match > 1 then

EXCVADDR ← AR[s]
Exception (InstructionFetchTLBMultiHit)

else
AR[t] ← PackInstTLBEntrySpec(match, vpn, ei, wi)

endif
endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 0 0 0 0 0 1 0 1 s t 0 0 0 0

4 4 4 4 4 4
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Quotient Signed QUOS
Instruction Word (RRR)

Required Configuration Option

32-bit Integer Divide Option (See Section 4.3.6 on page 59)

Assembler Syntax

QUOS ar, as, at

Description

QUOS performs a 32-bit two’s complement division of the contents of address register as 
by the contents of address register at and writes the quotient to address register ar. 
The ambiguity which exists when either address register as or address register at is 
negative is resolved by requiring the product of the quotient and address register at to 
be smaller in absolute value than the address register as. If the contents of address reg-
ister at are zero, QUOS raises an Integer Divide by Zero exception instead of writing a 
result. Overflow (-2147483648 divided by -1) is not detected.

Operation

if AR[t] = 032 then
Exception (IntegerDivideByZero)

else
AR[r] ← AR[s] quo AR[t]

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(IntegerDivideByZeroCause) if 32-bit Integer Divide Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 0 1 0 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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QUOU Quotient Unsigned
Instruction Word (RRR)

Required Configuration Option

32-bit Integer Divide Option (See Section 4.3.6 on page 59)

Assembler Syntax

QUOU ar, as, at

Description

QUOU performs a 32-bit unsigned division of the contents of address register as by the 
contents of address register at and writes the quotient to address register ar. If the con-
tents of address register at are zero, QUOU raises an Integer Divide by Zero exception 
instead of writing a result.

Operation

if AR[t] = 032 then
Exception (IntegerDivideByZero)

else
tq ← (0||AR[s]) quo (0||AR[t])
AR[r] ← tq31..0

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(IntegerDivideByZeroCause) if 32-bit Integer Divide Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 0 0 0 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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Read Data TLB Entry Virtual RDTLB0
Instruction Word (RRR)

Required Configuration Option

Region Translation Option (page 156) or the MMU Option (page 158)

Assembler Syntax

RDTLB0 at, as

Description

RDTLB0 reads the data TLB entry specified by the contents of address register as and 
writes the Virtual Page Number (VPN) and address space ID (ASID) to address register 
at. See Section 4.6 on page 138 for information on the address and result register for-
mats for specific memory protection and translation options.

RDTLB0 is a privileged instruction.

Operation

AR[t] ← RDTLB0(AR[s])

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 0 0 0 0 1 0 1 1 s t 0 0 0 0

4 4 4 4 4 4
Xtensa Instruction Set Architecture (ISA) Reference Manual 473



RDTLB1 Read Data TLB Entry Translation
Instruction Word (RRR)

Required Configuration Option

Region Translation Option (page 156) or the MMU Option (page 158)

Assembler Syntax

RDTLB1 at, as

Description

RDTLB1 reads the data TLB entry specified by the contents of address register as and 
writes the Physical Page Number (PPN) and cache attribute (CA) to address register 
at. See Section 4.6 on page 138 for information on the address and result register for-
mats for specific memory protection and translation options.

RDTLB1 is a privileged instruction.

Operation

AR[t] ← RDTLB1(AR[s])

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 0 0 0 0 1 1 1 1 s t 0 0 0 0

4 4 4 4 4 4
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Remainder Signed REMS
Instruction Word (RRR)

Required Configuration Option

32-bit Integer Divide Option (See Section 4.3.6 on page 59)

Assembler Syntax

REMS ar, as, at

Description

REMS performs a 32-bit two’s complement division of the contents of address register as 
by the contents of address register at and writes the remainder to address register ar. 
The ambiguity which exists when either address register as or address register at is 
negative is resolved by requiring the remainder to have the same sign as address regis-
ter as. If the contents of address register at are zero, REMS raises an Integer Divide by 
Zero exception instead of writing a result.

Operation

if AR[t] = 032 then
Exception (IntegerDivideByZero)

else
AR[r] ← AR[s] rem AR[t]

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(IntegerDivideByZeroCause) if 32-bit Integer Divide Option 

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 0 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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REMU Remainder Unsigned
Instruction Word (RRR)

Required Configuration Option

32-bit Integer Divide Option (See Section 4.3.6 on page 59)

Assembler Syntax

REMU ar, as, at

Description

REMU performs a 32-bit unsigned division of the contents of address register as by the 
contents of address register at and writes the remainder to address register ar. If the 
contents of address register at are zero, REMU raises an Integer Divide by Zero excep-
tion instead of writing a result.

Operation

if AR[t] = 032 then
Exception (IntegerDivideByZero)

else
tr ← (0||AR[s]) rem (0||AR[t])
AR[r] ← tr31..0

endif

Exceptions

EveryInstR Group (see page 244)

GenExcep(IntegerDivideByZeroCause) if 32-bit Integer Divide Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 0 0 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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Read External Register RER
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

RER at, as

Description

RER reads one of a set of "External Registers". It is in some ways similar to the RSR.* 
instruction except that the registers being read are not defined by the Xtensa ISA and 
are conceptually outside the processor core. They are read through processor ports.

Address register as is used to determine which register is to be read and the result is 
placed in address register at. When no External Register is addressed by the value in 
address register as, the result in address register at is undefined. The entire address 
space is reserved for use by Tensilica. RER and WER are managed by the processor core 
so that the requests appear on the processor ports in program order. External logic is re-
sponsible for extending that order to the registers themselves.

RER is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
Read External Register as defined outside the processor.

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 0 0 0 0 0 1 1 0 s t 0 0 0 0

4 4 4 4 4 4
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RET Non-Windowed Return
Instruction Word (CALLX)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

RET

Description

RET returns from a routine called by CALL0 or CALLX0. It is equivalent to the instruction
JX A0

RET exists as a separate instruction because some Xtensa ISA implementations may 
realize performance advantages from treating this operation as a special case.

Assembler Note

The assembler may convert RET instructions to RET.N when the Code Density Option is 
enabled. Prefixing the RET instruction with an underscore (_RET) disables this optimiza-
tion and forces the assembler to generate the wide form of the instruction.

Operation

nextPC ← AR[0]

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 6 5 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

4 4 4 4 2 2 4
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Narrow Non-Windowed Return RET.N
Instruction Word (RRRN)

Required Configuration Option

Code Density Option (See Section 4.3.1 on page 53)

Assembler Syntax

RET.N

Description

RET.N is the same as RET in a 16-bit encoding. RET returns from a routine called by 
CALL0 or CALLX0.

Assembler Note

The assembler may convert RET.N instructions to RET. Prefixing the RET.N instruction 
with an underscore (_RET.N) disables this optimization and forces the assembler to 
generate the narrow form of the instruction.

Operation

nextPC ← AR[0]

Exceptions

EveryInst Group (see page 244)

15 12 11 8 7 4 3 0

1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1

4 4 4 4
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RETW Windowed Return
Instruction Word (CALLX)

Required Configuration Option

Windowed Register Option (See Section 4.7.1 on page 180)

Assembler Syntax

RETW

Description

RETW returns from a subroutine called by CALL4, CALL8, CALL12, CALLX4, CALLX8, or 
CALLX12, and that had ENTRY as its first instruction.

RETW uses bits 29..0 of address register a0 as the low 30 bits of the return address 
and bits 31..30 of the address of the RETW as the high two bits of the return address. 
Bits 31..30 of a0 are used as the caller’s window increment.

RETW subtracts the window increment from WindowBase to return to the caller’s regis-
ters. It then checks the WindowStart bit for this WindowBase. If it is set, then the 
caller’s registers still reside in the register file, and RETW completes by clearing its own 
WindowStart bit and jumping to the return address. If the WindowStart bit is clear, 
then the caller’s registers have been stored into the stack, so RETW signals one of win-
dow underflow’s 4, 8, or 12, based on the size of the caller’s window increment. The un-
derflow handler is invoked with WindowBase decremented, a minor exception to the 
rule that instructions aborted by an exception have no side effects to the operating state 
of the processor. The processor stores the previous value of WindowBase in PS.OWB so 
that it can be restored by RFWU.

The window underflow handler is expected to restore the caller’s registers, set the 
caller’s WindowStart bit, and then return (see RFWU) to re-execute the RETW, which 
will then complete.

The operation of this instruction is undefined if AR[0]31..30 is 02, if PS.WOE is 0, if 
PS.EXCM is 1, or if the first set bit among [WindowStartWindowBase-1, 
WindowStartWindowBase-2, WindowStartWindowBase-3] is anything other than 
WindowStartWindowBase-n, where n is AR[0]31..30. (If none of the three bits is set, an 

23 20 19 16 15 12 11 8 7 6 5 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

4 4 4 4 2 2 4
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Windowed Return RETW
underflow exception will be raised as described above, but if the wrong first one is set, 
the state is not legal.) Some implementations raise an illegal instruction exception in 
these cases as a debugging aid.

Assembler Note

The assembler may convert RETW instructions to RETW.N when the Code Density 
Option is enabled. Prefixing the RETW instruction with an underscore (_RETW) disables 
this optimization and forces the assembler to generate the wide form of the instruction.

Operation

n ← AR[0]31..30
nextPC ← PC31..30||AR[0]29..0
owb ← WindowBase
m ← if WindowStartWindowBase-4’b0001 then 2’b01
 elsif WindowStartWindowBase-4’b0010 then 2’b10
 elsif WindowStartWindowBase-4’b0011 then 2’b11
 else 2’b00
if n=2’b00 | (m≠2’b00 & m≠n) | PS.WOE=0 | PS.EXCM=1 then

-- undefined operation
-- may raise illegal instruction exception

else
WindowBase ← WindowBase − (02||n)
if WindowStartWindowBase ≠ 0 then

WindowStartowb ← 0
else

-- Underflow exception
PS.EXCM ← 1
EPC[1] ← PC
PS.OWB ← owb
nextPC ← if n = 2'b01 then WindowUnderflow4

else if n = 2'b10 then WindowUnderflow8
else WindowUnderflow12

endif
endif

Exceptions

EveryInst Group (see page 244)
WindowUnderExcep if Windowed Register Option
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RETW.N Narrow Windowed Return
Instruction Word (RRRN)

Required Configuration Option

Code Density Option (See Section 4.3.1 on page 53) and Windowed Register Option 
(See Section 4.7.1 on page 180)

Assembler Syntax

RETW.N

Description

RETW.N is the same as RETW in a 16-bit encoding.

Assembler Note

The assembler may convert RETW.N instructions to RETW. Prefixing the RETW.N instruc-
tion with an underscore (_RETW.N) disables this optimization and forces the assembler 
to generate the narrow form of the instruction.

Operation

n ← AR[0]31..30
nextPC ← PC31..30||AR[0]29..0
owb ← WindowBase
m ← if WindowStartWindowBase-4’b0001 then 2’b01
 elsif WindowStartWindowBase-4’b0010 then 2’b10
 elsif WindowStartWindowBase-4’b0011 then 2’b11
 else 2’b00
if n=2’b00 | (m≠2’b00 & m≠n) | PS.WOE=0 | PS.EXCM=1 then

-- undefined operation
-- may raise illegal instruction exception

else
WindowBase ← WindowBase − (02||n)
if WindowStartWindowBase ≠ 0 then

WindowStartowb ← 0
else

-- Underflow exception
PS.EXCM ← 1
EPC[1] ← PC

15 12 11 8 7 4 3 0

1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1

4 4 4 4
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Narrow Windowed Return RETW.N
PS.OWB ← owb
nextPC ← if n = 2'b01 then WindowUnderflow4

else if n = 2'b10 then WindowUnderflow8
else WindowUnderflow12

endif
endif

Exceptions

EveryInst Group (see page 244)
WindowUnderExcep if Windowed Register Option
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RFDD Return from Debug and Dispatch
Instruction Word (RRR)

Required Configuration Option

Debug Option (See Section 4.7.6 on page 197) and OCD, Implementation-Specific

Assembler Syntax

RFDD

Description

This instruction is used only in On-Chip Debug Mode and exists only in some implemen-
tations. It is an illegal instruction when the processor is not in On-Chip Debug Mode. 
See the Tensilica On-Chip Debugging Guide for a description of its operation.

Exceptions

EveryInst Group (see page 244)
GenExcep(IllegalInstructionCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 s0 0 0 0 1 0 0 0 0

4 4 4 4 4 4
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Return from Double Exception RFDE
Instruction Word (RRR)

Required Configuration Option

Exception Option (See Section 4.4.1 on page 82)

Assembler Syntax

RFDE

Description

RFDE returns from an exception that went to the double exception vector (that is, an ex-
ception raised while the processor was executing with PS.EXCM set). It is similar to RFE, 
but PS.EXCM is not cleared, and DEPC, if it exists, is used instead of EPC[1]. RFDE sim-
ply jumps to the exception PC. PS.UM and PS.WOE are left unchanged.

RFDE is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

elsif NDEPC=1 then
nextPC ¨ DEPC

else
nextPC ← EPC[1]

endif

Exceptions

EveryInst Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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RFDO Return from Debug Operation
Instruction Word (RRR)

Required Configuration Option

Debug Option (See Section 4.7.6 on page 197) and OCD, Implementation-Specific

Assembler Syntax

RFDO

Description

This instruction is used only in On-Chip Debug Mode and exists only in some implemen-
tations. It is an illegal instruction when the processor is not in On-Chip Debug Mode. 
See the Tensilica On-Chip Debugging Guide for a description of its operation.

Exceptions

EveryInst Group (see page 244)
GenExcep(IllegalInstructionCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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Return from Exception RFE
Instruction Word (RRR)

Required Configuration Option

Exception Option (See Section 4.4.1 on page 82)

Assembler Syntax

RFE

Description

RFE returns from either the UserExceptionVector or the KernelExceptionVector. RFE 
sets PS.EXCM back to 0, and then jumps to the address in EPC[1]. PS.UM and PS.WOE 
are left unchanged.

RFE is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
PS.EXCM ← 0
nextPC ← EPC[1]

endif

Exceptions

EveryInst Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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RFI Return from High-Priority Interrupt
Instruction Word (RRR)

Required Configuration Option

High-Priority Interrupt Option (See Section 4.4.5 on page 106)

Assembler Syntax

RFI 0..15

Description

RFI returns from a high-priority interrupt. It restores the PS from EPS[level] and 
jumps to the address in EPC[level]. Level is given as a constant 2..(NLEVEL+NNMI) 
in the instruction word. The operation of this opcode when level is 0 or 1 or greater than 
(NLEVEL+NNMI) is undefined.

RFI is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
nextPC ← EPC[level]
PS ← EPS[level]

endif

Exceptions

EveryInst Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 1 level 0 0 0 1 0 0 0 0

4 4 4 4 4 4
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Return from Memory Error RFME
Instruction Word (RRR)

Required Configuration Option

Memory ECC/Parity Option (See Section 4.5.14 on page 128)

Assembler Syntax

RFME

Description

RFME returns from a memory error exception. It restores the PS from MEPS and jumps to 
the address in MEPC. In addition, the MEME bit of the MESR register is cleared.

RFME is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
nextPC ← MEPC
PS ← MEPS
MESR.MEME ← 0

endif

Exceptions

EveryInst Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

4 4 4 4 4 4
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RFR Move FR to AR
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

RFR ar, fs

Description

RFR moves the contents of floating-point register fs to address register ar. The move is 
non-arithmetic; no floating-point exceptions are raised.

Operation

AR[r] ← FR[s]

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 1 0 1 0 r s 0 1 0 0 0 0 0 0

4 4 4 4 4 4
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Return from User-Mode Exception RFUE
Instruction Word (RRR)

Required Configuration Option

Exception Option (Xtensa Exception Architecture 1 Only)

Assembler Syntax

RFUE

Description

RFUE exists only in Xtensa Exception Architecture 1 (see Section A.2 “Xtensa Exception 
Architecture 1” on page 611). It is an illegal instruction in current Xtensa implementa-
tions.

Exceptions

EveryInst Group (see page 244)
GenExcep(IllegalInstructionCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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RFWO Return from Window Overflow
Instruction Word (RRR)

Required Configuration Option

Windowed Register Option (See Section 4.7.1 on page 180)

Assembler Syntax

RFWO

Description

RFWO returns from an exception that went to one of the three window overflow vectors. It 
sets PS.EXCM back to 0, clears the WindowStart bit of the registers that were spilled, 
restores WindowBase from PS.OWB, and then jumps to the address in EPC[1]. PS.UM 
is left unchanged.

RFWO is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
PS.EXCM ← 0
nextPC ← EPC[1]
WindowStartWindowBase ← 0
WindowBase ← PS.OWB

endif

Exceptions

EveryInst Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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Return From Window Underflow RFWU
Instruction Word (RRR)

Required Configuration Option

Windowed Register Option (See Section 4.7.1 on page 180)

Assembler Syntax

RFWU

Description

RFWU returns from an exception that went to one of the three window underflow vectors. 
It sets PS.EXCM back to 0, sets the WindowStart bit of the registers that were reload-
ed, restores WindowBase from PS.OWB, and then jumps to the address in EPC[1]. 
PS.UM is left unchanged.

RFWU is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
PS.EXCM ← 0
nextPC ← EPC[1]
WindowStartWindowBase ← 1
WindowBase ← PS.OWB

endif

Exceptions

EveryInst Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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RITLB0 Read Instruction TLB Entry Virtual
Instruction Word (RRR)

Required Configuration Option

Region Translation Option (page 156) or the MMU Option (page 158)

Assembler Syntax

RITLB0 at, as

Description

RITLB0 reads the instruction TLB entry specified by the contents of address register as 
and writes the Virtual Page Number (VPN) and address space ID (ASID) to address reg-
ister at. See Section 4.6 on page 138 for information on the address and result register 
formats for specific memory protection and translation options.

RITLB0 is a privileged instruction.

Operation

AR[t] ← RITLB0(AR[s])

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 0 0 0 0 0 0 1 1 s t 0 0 0 0

4 4 4 4 4 4
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Read Instruction TLB Entry Translation RITLB1
Instruction Word (RRR)

Required Configuration Option

Region Translation Option (page 156) or the MMU Option (page 158)

Assembler Syntax

RITLB1 at, as

Description

RITLB1 reads the instruction TLB entry specified by the contents of address register as 
and writes the Physical Page Number (PPN) and cache attribute (CA) to address regis-
ter at. See Section 4.6 on page 138 for information on the address and result register 
formats for specific memory protection and translation options.

RITLB1 is a privileged instruction.

Operation

AR[t] ← RITLB1(AR[s])

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 0 0 0 0 0 1 1 1 s t 0 0 0 0

4 4 4 4 4 4
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ROTW Rotate Window
Instruction Word (RRR)

Required Configuration Option

Windowed Register Option (See Section 4.7.1 on page 180)

Assembler Syntax

ROTW -8..7

Description

ROTW adds a constant to WindowBase, thereby moving the current window into the 
register file. ROTW is intended for use in exception handlers and context switch code.

ROTW is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
WindowBase ← WindowBase + imm4

endif

Exceptions

EveryInst Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 imm4 0 0 0 0

4 4 4 4 4 4
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Round Single to Fixed ROUND.S
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

ROUND.S ar, fs, 0..15

Description

ROUND.S converts the contents of floating-point register fs from single-precision to 
signed integer format, rounding toward the nearest. The single-precision value is first 
scaled by a power of two constant value encoded in the t field, with 0..15 representing 
1.0, 2.0, 4.0, …, 32768.0. The scaling allows for a fixed point notation where the binary 
point is at the right end of the integer for t=0 and moves to the left as t increases until 
for t=15 there are 15 fractional bits represented in the fixed point number. For positive 
overflow (value ≥ 32'h7fffffff), positive infinity, or NaN, 32'h7fffffff is 
returned; for negative overflow (value ≤ 32'h80000000) or negative infinity, 
32'h80000000 is returned. The result is written to address register ar.

Operation

AR[r] ← rounds(FR[s] ×s pows(2.0,t))

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 0 0 0 1 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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RSIL Read and Set Interrupt Level
Instruction Word (RRR)

Required Configuration Option

Interrupt Option (See Section 4.4.4 on page 100)

Assembler Syntax

RSIL at, 0..15

Description

RSIL first reads the PS Special Register (described in Table 4–63 on page 87, PS Reg-
ister Fields), writes this value to address register at, and then sets PS.INTLEVEL to a 
constant in the range 0..15 encoded in the instruction word. Interrupts at and below the 
PS.INTLEVEL level are disabled.

A WSR.PS or XSR.PS followed by an RSIL should be separated with an ESYNC to guar-
antee the value written is read back.

On some Xtensa ISA implementations the latency of RSIL is greater than one cycle, 
and so it is advantageous to schedule uses of the RSIL result later.

RSIL is typically used as follows:
RSIL a2, newlevel
code to be executed at newlevel
WSR.PS a2

The instruction following the RSIL is guaranteed to be executed at the new interrupt 
level specified in PS.INTLEVEL, therefore it is not necessary to insert one of the SYNC 
instructions to force the interrupt level change to take effect. 

RSIL is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
AR[t] ← PS

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 1 1 0 imm4 t 0 0 0 0

4 4 4 4 4 4
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Read and Set Interrupt Level RSIL
PS.INTLEVEL ← s
endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option
Xtensa Instruction Set Architecture (ISA) Reference Manual 499



RSR.* Read Special Register
Instruction Word (RSR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

RSR.* at

RSR at, *

RSR at, 0..255

Description

RSR.* reads the Special Registers that are described in Section 3.8.10 “Processor Con-
trol Instructions” on page 45. See Section 5.3 on page 208 for more detailed information 
on the operation of this instruction for each Special Register.

The contents of the Special Register designated by the 8-bit sr field of the instruction 
word are written to address register at. The name of the Special Register is used in 
place of the ‘*’ in the assembler syntax above and the translation is made to the 8-bit sr 
field by the assembler.

RSR is an assembler macro for RSR.* that provides compatibility with the older versions 
of the instruction containing either the name or the number of the Special Register.

A WSR.* followed by an RSR.* to the same register should be separated with ESYNC to 
guarantee the value written is read back. On some Xtensa ISA implementations, the la-
tency of RSR.* is greater than one cycle, and so it is advantageous to schedule other 
instructions before instructions that use the RSR.* result.

RSR.* with Special Register numbers ≥ 64 is privileged. An RSR.* for an unconfigured 
register generally will raise an illegal instruction exception.

Operation

sr ← if msbFirst then s||r else r||s
if sr ≥ 64 and CRING ≠ 0 then

23 20 19 16 15 8 7 4 3 0

0 0 0 0 0 0 1 1 sr t 0 0 0 0

4 4 8 4 4
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Read Special Register RSR.*
Exception (PrivilegedInstructionCause)
else

see the Tables in Section 5.3 on page 208
endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(IllegalInstructionCause) if Exception Option
GenExcep(PrivilegedCause) if Exception Option
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RSYNC Register Read Synchronize
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

RSYNC

Description

RSYNC waits for all previously fetched WSR.* instructions to be performed before inter-
preting the register fields of the next instruction. This operation is also performed as part 
of ISYNC. ESYNC and DSYNC are performed as part of this instruction.

This instruction is appropriate after WSR.WindowBase, WSR.WindowStart, WSR.PS, 
WSR.CPENABLE, or WSR.EPS* instructions before using their results. See the Special 
Register Tables in Section 5.3 on page 208 for a complete description of the uses of the 
RSYNC instruction.

Because the instruction execution pipeline is implementation-specific, the operation sec-
tion below specifies only a call to the implementation’s rsync function.

Operation

rsync()

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

4 4 4 4 4 4
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Read User Register RUR.*
Instruction Word (RRR)

Required Configuration Option

No Option - instructions created from the TIE language (See Section 4.3.9.2 “Coproces-
sor Context Switch” on page 64)

Assembler Syntax

RUR.* ar

RUR ar, *

Description

RUR.* reads TIE state that has been grouped into 32-bit quantities by the TIE 
user_register statement. The name in the user_register statement replaces the 
“*” in the instruction name and causes the correct register number to be placed in the st 
field of the encoded instruction. The contents of the TIE user_register designated by 
the 8-bit number 16*s+t are written to address register ar. Here s and t are the 
numbers corresponding to the respective fields of the instruction word.

RUR is an assembler macro for RUR.*, which provides compatibility with the older 
version of the instruction.

Operation

AR[r] ← user_register[st]

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor*Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 0 0 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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S8I Store 8-bit
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

S8I at, as, 0..255

Description

S8I is an 8-bit store from address register at to memory. It forms a virtual address by 
adding the contents of address register as and an 8-bit zero-extended constant value 
encoded in the instruction word. Therefore, the offset has a range from 0 to 255. Eight 
bits (1 byte) from the least significant quarter of address register at are written to mem-
ory at the physical address.

If the Region Translation Option (page 156) or the MMU Option (page 158)is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Operation

vAddr ← AR[s] + (024||imm8)
Store8 (vAddr, AR[t]7..0)

Exceptions

Memory Group (see page 244)
GenExcep(StoreProhibitedCause) if Region Protection Option or MMU Option
DebugExcep(DBREAK) if Debug Option

23 16 15 12 11 8 7 4 3 0

imm8 0 1 0 0 s t 0 0 1 0

8 4 4 4 4
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Store 16-bit S16I
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

S16I at, as, 0..510

Description

S16I is a 16-bit store from address register at to memory. It forms a virtual address by 
adding the contents of address register as and an 8-bit zero-extended constant value 
encoded in the instruction word shifted left by one. Therefore, the offset can specify mul-
tiples of two from zero to 510. Sixteen bits (two bytes) from the least significant half of 
the register are written to memory at the physical address.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the least significant bit of the 
address is ignored. A reference to an odd address produces the same result as a refer-
ence to the address, minus one. With the Unaligned Exception Option, such an access 
raises an exception.

Assembler Note

To form a virtual address, S16I calculates the sum of address register as and the imm8 
field of the instruction word times two. Therefore, the machine-code offset is in terms of 
16-bit (2 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by two.

Operation

vAddr ← AR[s] + (023||imm8||0)
Store16 (vAddr, AR[t]15..0)

Exceptions

Memory Store Group (see page 245)

23 16 15 12 11 8 7 4 3 0

imm8 0 1 0 1 s t 0 0 1 0

8 4 4 4 4
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S32C1I Store 32-bit Compare Conditional
Instruction Word (RRI8)

Required Configuration Option

Conditional Store Option (See Section 4.3.13 on page 77)

Assembler Syntax

S32C1I at, as, 0..1020

Description

S32C1I is a conditional store instruction intended for updating synchronization variables 
in memory shared between multiple processors. It may also be used to atomically up-
date variables shared between different interrupt levels or other pairs of processes on a 
single processor. S32C1I attempts to store the contents of address register at to the 
virtual address formed by adding the contents of address register as and an 8-bit zero-
extended constant value encoded in the instruction word shifted left by two. If the old 
contents of memory at the physical address equals the contents of the SCOMPARE1 Spe-
cial Register, the new data is written; otherwise the memory is left unchanged. In either 
case, the value read from the location is written to address register at. The memory 
read, compare, and write may take place in the processor or the memory system, de-
pending on the Xtensa ISA implementation, as long as these operations exclude other 
writes to this location. See Section 4.3.13 “Conditional Store Option” on page 77 for 
more information on where the atomic operation takes place.

From a memory ordering point of view, the atomic pair of accesses has the characteris-
tics of both an acquire and a release. That is, the atomic pair of accesses does not begin 
until all previous loads, stores, acquires, and releases have performed. The atomic pair 
must perform before any following load, store, acquire, or release may begin.

If the Region Translation Option (page 156) or the MMU Option (page 158)is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

23 16 15 12 11 8 7 4 3 0

imm8 1 1 1 0 s t 0 0 1 0

8 4 4 4 4
506 Xtensa Instruction Set Architecture (ISA) Reference Manual



Store 32-bit Compare Conditional S32C1I
Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

S32C1I does both a load and a store when the store is successful. However, memory 
protection tests check for store capability and the instruction may raise a 
StoreProhibitedCause exception, but will never raise a LoadProhibited Cause exception.

Assembler Note

To form a virtual address, S32C1I calculates the sum of address register as and the 
imm8 field of the instruction word times four. Therefore, the machine-code offset is in 
terms of 32-bit (4 byte) units. However, the assembler expects a byte offset and encodes 
this into the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)
(mem32, error) ← Store32C1 (vAddr, AR[t], SCOMPARE1)
if error then

EXCVADDR ← vAddr
Exception (LoadStoreError)

else
AR[t] ← mem32

endif

Exceptions

Memory Store Group (see page 245)
Xtensa Instruction Set Architecture (ISA) Reference Manual 507



S32E Store 32-bit for Window Exceptions
Instruction Word (RRI4)

Required Configuration Option

Windowed Register Option (See Section 4.7.1 on page 180)

Assembler Syntax

S32E at, as, -64..-4

Description

S32E is a 32-bit store instruction similar to S32I, but with semantics required by window 
overflow and window underflow exception handlers. In particular, memory access check-
ing is done with PS.RING instead of CRING, and the offset used to form the virtual ad-
dress is a 4-bit one-extended immediate. Therefore, the offset can specify multiples of 
four from -64 to -4. In configurations without the MMU Option, there is no PS.RING and 
S32E is similar to S32I with a negative offset.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

S32E is a privileged instruction.

Assembler Note

To form a virtual address, S32E calculates the sum of address register as and the r field 
of the instruction word times four (and one extended). Therefore, the machine-code 
offset is in terms of 32-bit (4 byte) units. However, the assembler expects a byte offset 
and encodes this into the instruction by dividing by four.

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 1 0 0 1 r s t 0 0 0 0

4 4 4 4 4 4
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Store 32-bit for Window Exceptions S32E
Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
vAddr ← AR[s] + (126||r||02)
ring ← if MMU Option then PS.RING else 0
Store32Ring (vAddr, AR[t], ring)

endif

Exceptions

Memory Store Group (see page 245)
GenExcep(PrivilegedCause) if Exception Option
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S32I Store 32-bit
Instruction Word (RRI8)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

S32I at, as, 0..1020

Description

S32I is a 32-bit store from address register at to memory. It forms a virtual address by 
adding the contents of address register as and an 8-bit zero-extended constant value 
encoded in the instruction word shifted left by two. Therefore, the offset can specify mul-
tiples of four from zero to 1020. The data to be stored is taken from the contents of ad-
dress register at and written to memory at the physical address.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an er-
ror (for example, protection violation or non-existent memory), the processor raises one 
of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

S32I is one of only a few memory reference instructions that can access instruction 
RAM.

Assembler Note

The assembler may convert S32I instructions to S32I.N when the Code Density 
Option is enabled and the imm8 operand falls within the available range. Prefixing the 
S32I instruction with an underscore (_S32I) disables this optimization and forces the 
assembler to generate the wide form of the instruction.

23 16 15 12 11 8 7 4 3 0

imm8 0 1 1 0 s t 0 0 1 0

8 4 4 4 4
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Store 32-bit S32I
To form a virtual address, S32I calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)
Store32 (vAddr, AR[t])

Exceptions

Memory Store Group (see page 245)
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S32I.N Narrow Store 32-bit
Instruction Word (RRRN)

Required Configuration Option

Code Density Option (See Section 4.3.1 on page 53)

Assembler Syntax

S32I.N at, as, 0..60

Description

S32I.N is similar to S32I, but has a 16-bit encoding and supports a smaller range of 
offset values encoded in the instruction word.

S32I.N is a 32-bit store to memory. It forms a virtual address by adding the contents of 
address register as and an 4-bit zero-extended constant value encoded in the instruc-
tion word shifted left by two. Therefore, the offset can specify multiples of four from zero 
to 60. The data to be stored is taken from the contents of address register at and written 
to memory at the physical address.

S32I.N is one of only a few memory reference instructions that can access instruction 
RAM.

If the Region Translation Option (page 156) or the MMU Option (page 158)is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Options, such an access raises an exception.

15 12 11 8 7 4 3 0

imm4 s t 1 0 0 1

4 4 4 4
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Narrow Store 32-bit S32I.N
Assembler Note

The assembler may convert S32I.N instructions to S32I. Prefixing the S32I.N instruc-
tion with an underscore (_S32I.N) disables this optimization and forces the assembler 
to generate the narrow form of the instruction.

To form a virtual address, S32I.N calculates the sum of address register as and the 
imm4 field of the instruction word times four. Therefore, the machine-code offset is in 
terms of 32-bit (4 byte) units. However, the assembler expects a byte offset and encodes 
this into the instruction by dividing by four.

Operation

vAddr ← AR[s] + (026||imm4||02)
Store32 (vAddr, AR[t])

Exceptions

Memory Store Group (see page 245)
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S32RI Store 32-bit Release
Instruction Word (RRI8)

Required Configuration Option

Multiprocessor Synchronization Option (See Section 4.3.12 on page 74)

Assembler Syntax

S32RI at, as, 0..1020

Description

S32RI is a store barrier and 32-bit store from address register at to memory. S32RI 
stores to synchronization variables, which signals that previously written data is 
“released” for consumption by readers of the synchronization variable. This store will not 
perform until all previous loads, stores, acquires, and releases have performed. This 
ensures that any loads of the synchronization variable that see the new value will also 
find all previously written data available as well.

S32RI forms a virtual address by adding the contents of address register as and an  
8-bit zero-extended constant value encoded in the instruction word shifted left by two. 
Therefore, the offset can specify multiples of four from zero to 1020. S32RI waits for 
previous loads, stores, acquires, and releases to be performed, and then the data to be 
stored is taken from the contents of address register at and written to memory at the 
physical address. Because the method of waiting is implementation dependent, this is 
indicated in the operation section below by the implementation function release.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without theUnaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

23 16 15 12 11 8 7 4 3 0

imm8 1 1 1 1 s t 0 0 1 0

8 4 4 4 4
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Store 32-bit Release S32RI
Assembler Note

To form a virtual address, S32RI calculates the sum of address register as and the 
imm8 field of the instruction word times four. Therefore, the machine-code offset is in 
terms of 32-bit (4 byte) units. However, the assembler expects a byte offset and encodes 
this into the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)
release()
Store32 (vAddr, AR[t])

Exceptions

Memory Store Group (see page 245)
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SDCT Store Data Cache Tag
Instruction Word (RRR)

Required Configuration Option

Data Cache Test Option (See Section 4.5.6 on page 121)

Assembler Syntax

SDCT at, as

Description

SDCT is not part of the Xtensa Instruction Set Architecture, but is instead specific to an 
implementation. That is, it may not exist in all implementations of the Xtensa ISA.

SDCT is intended for writing the RAM array that implements the data cache tags as part 
of manufacturing test.

SDCT uses the contents of address register as to select a line in the data cache and 
writes the contents of address register at to the tag associated with that line. The value 
written from at is described under Cache Tag Format in Section 4.5.1.2 on page 112.

SDCT is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
index ← AR[s]dih..dil
DataCacheTag[index] ← AR[t]

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option
MemoryErrorException if Memory ECC/Parity Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 0 0 0 1 1 0 0 1 s t 0 0 0 0

4 4 4 4 4 4
516 Xtensa Instruction Set Architecture (ISA) Reference Manual



Store Data Cache Tag SDCT
Implementation Notes

x ← ceil(log2(DataCacheBytes))
y ← log2(DataCacheBytes ÷ DataCacheWayCount)
z ← log2(DataCacheLineBytes)

The cache line specified by index AR[s]x-1..z in a direct-mapped cache or way 
AR[s]x-1..y and index AR[s]y-1..z in a set-associative cache is the chosen line. If the 
specified cache way is not valid (the fourth way of a three way cache), the instruction 
does nothing.
Xtensa Instruction Set Architecture (ISA) Reference Manual 517



SEXT Sign Extend
Instruction Word (RRR)

Required Configuration Option

Miscellaneous Operations Option (See Section 4.3.8 on page 62)

Assembler Syntax

SEXT ar, as, 7..22

Description

SEXT takes the contents of address register as and replicates the bit specified by its 
immediate operand (in the range 7 to 22) to the high bits and writes the result to address 
register ar. The input can be thought of as an imm+1 bit value with the high bits irrele-
vant and this instruction produces the 32-bit sign-extension of this value.

Assembler Note

The immediate values accepted by the assembler are 7 to 22. The assembler encodes 
these in the t field of the instruction using 0 to 15.

Operation

b ← t+7
AR[r] ← AR[s]b

31−b||AR[s]b..0

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 0 0 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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Store Instruction Cache Tag SICT
Instruction Word (RRR)

Required Configuration Option

Instruction Cache Test Option (See Section 4.5.3 on page 116)

Assembler Syntax

SICT at, as

Description

SICT is not part of the Xtensa Instruction Set Architecture, but is instead specific to an 
implementation. That is, it may not exist in all implementations of the Xtensa ISA.

SICT is intended for writing the RAM array that implements the instruction cache tags as 
part of manufacturing test.

SICT uses the contents of address register as to select a line in the instruction cache, 
and writes the contents of address register at to the tag associated with that line. The 
value written from at is described under Cache Tag Format in Section 4.5.1.2 on 
page 112.

SICT is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
index ← AR[s]iih..iil
InstCacheTag[index] ← AR[t]

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option
MemoryErrorException if Memory ECC/Parity Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 0 0 0 1 0 0 0 1 s t 0 0 0 0

4 4 4 4 4 4
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SICT Store Instruction Cache Tag
Implementation Notes

x ← ceil(log2(InstCacheBytes))
y ← log2(InstCacheBytes ÷ InstCacheWayCount)
z ← log2(InstCacheLineBytes)

The cache line specified by index AR[s]x-1..z in a direct-mapped cache or way 
AR[s]x-1..y and index AR[s]y-1..z in a set-associative cache is the chosen line. If the 
specified cache way is not valid (the fourth way of a three way cache), the instruction 
does nothing.
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Store Instruction Cache Word SICW
Instruction Word (RRR)

Required Configuration Option

Instruction Cache Test Option (See Section 4.5.3 on page 116)

Assembler Syntax

SICW at, as

Description

SICW is not part of the Xtensa Instruction Set Architecture, but is instead specific to an 
implementation. That is, it may not exist in all implementations of the Xtensa ISA.

SICW is intended for writing the RAM array that implements the instruction cache as part 
of manufacturing tests.

SICW uses the contents of address register as to select a line in the instruction cache, 
and writes the contents of address register at to the data associated with that line.

SICW is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
index ← AR[s]iih..iiw
InstCacheData [index] ← AR[t]

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option
MemoryErrorException if Memory ECC/Parity Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 0 0 0 1 0 0 1 1 s t 0 0 0 0

4 4 4 4 4 4
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SICW Store Instruction Cache Word
Implementation Notes

x ← ceil(log2(InstCacheBytes))
y ← log2(InstCacheBytes ÷ InstCacheWayCount)
z ← log2(InstCacheLineBytes)

The cache line specified by index AR[s]x-1..z in a direct-mapped cache or way 
AR[s]x-1..y and index AR[s]y-1..z in a set-associative cache is the chosen line. If the 
specified cache way is not valid (the fourth way of a three way cache), the instruction 
does nothing. Within the cache line, AR[s]z-1..2 is used to determine which 32-bit 
quantity within the line is written.

The width of the instruction cache RAM may be more than 32 bits depending on the con-
figuration. In that case, some implementations may write the same data replicated 
enough times to fill the entire width of the RAM.
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Simulator Call SIMCALL
Instruction Word (RRR)

Required Configuration Option

Xtensa Instruction Set Simulator only — illegal in hardware

Assembler Syntax

SIMCALL

Description

SIMCALL is not implemented by any Xtensa processor. Processors raise an illegal 
instruction exception for this opcode. It is implemented by the Xtensa Instruction Set 
Simulator only to allow simulated programs to request services of the simulator host 
processor. See the Xtensa Instruction Set Simulator (ISS) User’s Guide.

The value in address register a2 is the request code. Most codes request host system 
call services while others are used for special purposes such as debugging. Arguments 
needed by host system calls will be found in a3, a4, and a5 and a return code will be 
stored to a2 and an error number to a3.

Operation

See the Xtensa Instruction Set Simulator (ISS) User’s Guide. 

Exceptions

EveryInst Group (see page 244)
GenExcep(IllegalInstructionCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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SLL Shift Left Logical
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SLL ar, as

Description

SLL shifts the contents of address register as left by the number of bit positions speci-
fied (as 32 minus number of bit positions) in the SAR (shift amount register) and writes 
the result to address register ar. Typically the SSL or SSA8L instructions are used to 
specify the left shift amount by loading SAR with 32-shift. This transformation allows 
SLL to be implemented in the SRC funnel shifter (which only shifts right), using the SLL 
data as the most significant 32 bits and zero as the least significant 32 bits. Note the 
result of SLL is undefined if SAR > 32.

Operation

sa ← SAR5..0
AR[r] ← (AR[s]||032)31+sa..sa

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 1 0 0 0 0 1 r s 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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Shift Left Logical Immediate SLLI
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SLLI ar, as, 1..31

Description

SLLI shifts the contents of address register as left by a constant amount in the range 
1..31 encoded in the instruction. The shift amount sa field is split, with bits 3..0 in bits 
7..4 of the instruction word and bit 4 in bit 20 of the instruction word. The shift amount is 
encoded as 32−shift. When the sa field is 0, the result of this instruction is undefined.

Assembler Note

The shift amount is specified in the assembly language as the number of bit positions to 
shift left. The assembler performs the 32-shift calculation when it assembles the in-
struction word. When the immediate operand evaluates to zero, the assembler converts 
this instruction to an OR instruction to effect a register-to-register move. To disable this 
transformation, prefix the mnemonic with an underscore (_SLLI). If imm evaluates to 
zero when the mnemonic has the underscore prefix, the assembler will emit an error.

Operation

AR[r] ← (AR[s]||032)31+sa..sa

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 sa4 0 0 0 1 r s sa3..0 0 0 0 0

4 4 4 4 4 4
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SRA Shift Right Arithmetic
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SRA ar, at

Description

SRA arithmetically shifts the contents of address register at right, inserting the sign of 
at on the left, by the number of bit positions specified by SAR (shift amount register) and 
writes the result to address register ar. Typically the SSR or SSA8B instructions are used 
to load SAR with the shift amount from an address register. Note the result of SRA is un-
defined if SAR > 32.

Operation

sa ← SAR5..0
AR[r] ← ((AR[t]31)

32||AR[t])31+sa..sa

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 1 1 0 0 0 1 r 0 0 0 0 t 0 0 0 0

4 4 4 4 4 4
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Shift Right Arithmetic Immediate SRAI
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SRAI ar, at, 0..31

Description

SRAI arithmetically shifts the contents of address register at right, inserting the sign of 
at on the left, by a constant amount encoded in the instruction word in the range 0..31. 
The shift amount sa field is split, with bits 3..0 in bits 11..8 of the instruction word, 
and bit 4 in bit 20 of the instruction word.

Operation

AR[r] ← ((AR[t]31)
32||AR[t])31+sa..sa

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 sa4 0 0 0 1 r sa3..0 t 0 0 0 0

4 4 4 4 4 4
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SRC Shift Right Combined
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SRC ar, as, at

Description

SRC performs a right shift of the concatenation of address registers as and at by the 
shift amount in SAR. The least significant 32 bits of the shift result are written to address 
register ar. A shift with a wider input than output is called a funnel shift. SRC directly per-
forms right funnel shifts. Left funnel shifts are done by swapping the high and low oper-
ands to SRC and setting SAR to 32 minus the shift amount. The SSL and SSA8B instruc-
tions directly implement such SAR settings. Note the result of SRC is undefined if SAR > 
32.

Operation

sa ← SAR5..0
AR[r] ← (AR[s]||AR[t])31+sa..sa

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 0 0 0 0 0 1 r s t 0 0 0 0

4 4 4 4 4 4
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Shift Right Logical SRL
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SRL ar, at

Description

SRL shifts the contents of address register at right, inserting zeros on the left, by the 
number of bits specified by SAR (shift amount register) and writes the result to address 
register ar. Typically the SSR or SSA8B instructions are used to load SAR with the shift 
amount from an address register. Note the result of SRL is undefined if SAR > 32.

Operation

sa ← SAR5..0
AR[r] ← (032||AR[t])31+sa..sa

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 0 0 1 0 0 0 1 r 0 0 0 0 t 0 0 0 0

4 4 4 4 4 4
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SRLI Shift Right Logical Immediate
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SRLI ar, at, 0..15

Description

SRLI shifts the contents of address register at right, inserting zeros on the left, by a 
constant amount encoded in the instruction word in the range 0..15. There is no SRLI 
for shifts ≥ 16. EXTUI replaces these shifts.

Assembler Note

The assembler converts SRLI instructions with a shift amount ≥ 16 into EXTUI. Prefixing 
the SRLI instruction with an underscore (_SRLI) disables this replacement and forces 
the assembler to generate an error.

Operation

AR[r] ← (032||AR[t])31+sa..sa

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 0 0 0 1 r sa t 0 0 0 0

4 4 4 4 4 4
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Set Shift Amount for BE Byte Shift SSA8B
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SSA8B as

Description

SSA8B sets the shift amount register (SAR) for a left shift by multiples of eight (for exam-
ple, for big-endian (BE) byte alignment). The left shift amount is the two least significant 
bits of address register as multiplied by eight. Thirty-two minus this amount is written to 
SAR. Using 32 minus the left shift amount causes a funnel right shift and swapped high 
and low input operands to perform a left shift. SSA8B is similar to SSL, except the shift 
amount is multiplied by eight.

SSA8B is typically used to set up for an SRC instruction to shift bytes. It may be used with 
big-endian byte ordering to extract a 32-bit value from a non-aligned byte address.

Operation

SAR ← 32 − (0||AR[s]1..0||03)

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 0 0 0 0 0 0 1 1 s 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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SSA8L Set Shift Amount for LE Byte Shift
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SSA8L as

Description

SSA8L sets the shift amount register (SAR) for a right shift by multiples of eight (for ex-
ample, for little-endian (LE) byte alignment). The right shift amount is the two least sig-
nificant bits of address register as multiplied by eight, and is written to SAR. SSA8L is 
similar to SSR, except the shift amount is multiplied by eight.

SSA8L is typically used to set up for an SRC instruction to shift bytes. It may be used with 
little-endian byte ordering to extract a 32-bit value from a non-aligned byte address.

Operation

SAR ← 0||AR[s]1..0||03

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 0 0 0 0 0 0 1 0 s 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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Set Shift Amount Immediate SSAI
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SSAI 0..31

Description

SSAI sets the shift amount register (SAR) to a constant. The shift amount sa field is split, 
with bits 3..0 in bits 11..8 of the instruction word, and bit 4 in bit 4 of the instruction 
word. Because immediate forms exist of most shifts (SLLI, SRLI, SRAI), this is primari-
ly useful to set the shift amount for SRC.

Operation

SAR ← 0||sa

Exceptions

EveryInst Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 0 0 0 0 0 1 0 0 sa3..0 0 0 0 sa4 0 0 0 0

4 4 4 4 4 4
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SSI Store Single Immediate
Instruction Word (RRI8)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

SSI ft, as, 0..1020

Description

SSI is a 32-bit store from floating-point register ft to memory. It forms a virtual address 
by adding the contents of address register as and an 8-bit zero-extended constant value 
encoded in the instruction word shifted left by two. Therefore, the offset can specify mul-
tiples of four from zero to 1020. The data to be stored is taken from the contents of float-
ing-point register ft and written to memory at the physical address.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

Assembler Note

To form a virtual address, SSI calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)
Store32 (vAddr, FR[t])

23 16 15 12 11 8 7 4 3 0

imm8 0 1 0 0 s t 0 0 1 1

8 4 4 4 4
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Store Single Immediate SSI
Exceptions

Memory Store Group (see page 245)
GenExcep(Coprocessor0Disabled) if Coprocessor Option
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SSIU Store Single Immediate with Update
Instruction Word (RRI8)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

SSIU ft, as, 0..1020

Description

SSIU is a 32-bit store from floating-point register ft to memory with base address regis-
ter update. It forms a virtual address by adding the contents of address register as and 
an 8-bit zero-extended constant value encoded in the instruction word shifted left by two. 
Therefore, the offset can specify multiples of four from zero to 1020. The data to be 
stored is taken from the contents of floating-point register ft and written to memory at 
the physical address. The virtual address is written back to address register as.

If the Region Translation Option (page 156) or the MMU Option (page 158) is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

Assembler Note

To form a virtual address, SSIU calculates the sum of address register as and the imm8 
field of the instruction word times four. Therefore, the machine-code offset is in terms of 
32-bit (4 byte) units. However, the assembler expects a byte offset and encodes this into 
the instruction by dividing by four.

Operation

vAddr ← AR[s] + (022||imm8||02)

23 16 15 12 11 8 7 4 3 0

imm8 1 1 0 0 s t 0 0 1 1

8 4 4 4 4
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Store Single Immediate with Update SSIU
Store32 (vAddr, FR[t])
AR[s] ← vAddr

Exceptions

Memory Store Group (see page 245)
GenExcep(Coprocessor0Disabled) if Coprocessor Option
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SSL Set Shift Amount for Left Shift
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SSL as

Description

SSL sets the shift amount register (SAR) for a left shift (for example, SLL). The left shift 
amount is the 5 least significant bits of address register as. 32 minus this amount is writ-
ten to SAR. Using 32 minus the left shift amount causes a right funnel shift, and swapped 
high and low input operands to perform a left shift.

Operation

sa ← AR[s]4..0
SAR ← 32 − (0||sa)

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 0 0 0 0 0 0 0 1 s 0 0 0 0 0 0 0 0

4 4 4 4 4 4
538 Xtensa Instruction Set Architecture (ISA) Reference Manual



Set Shift Amount for Right Shift SSR
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SSR as

Description

SSR sets the shift amount register (SAR) for a right shift (for example, SRL, SRA, or SRC). 
The least significant five bits of address register as are written to SAR. The most signifi-
cant bit of SAR is cleared. This instruction is similar to a WSR.SAR, but differs in that only 
AR[s]4..0 is used, instead of AR[s]5..0.

Operation

sa ← AR[s]4..0
SAR ← 0||sa

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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SSX Store Single Indexed
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

SSX fr, as, at

Description

SSX is a 32-bit store from floating-point register ft to memory. It forms a virtual address 
by adding the contents of address register as and the contents of address register at. 
The data to be stored is taken from the contents of floating-point register fr and written 
to memory at the physical address.

If the Region Translation Option (page 156) or the MMU Option (page 158)is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

Operation

vAddr ← AR[s] + (AR[t])
Store32 (vAddr, FR[r])

Exceptions

Memory Store Group (see page 245)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 1 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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Store Single Indexed with Update SSXU
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

SSXU fr, as, at

Description

SSXU is a 32-bit store from floating-point register ft to memory with base address regis-
ter update. It forms a virtual address by adding the contents of address register as and 
the contents of address register at. The data to be stored is taken from the contents of 
floating-point register fr and written to memory at the physical address. The virtual ad-
dress is written back to address register as.

If the Region Translation Option (page 156) or the MMU Option (page 158)is enabled, 
the virtual address is translated to the physical address. If not, the physical address is 
identical to the virtual address. If the translation or memory reference encounters an 
error (for example, protection violation or non-existent memory), the processor raises 
one of several exceptions (see Section 4.4.1.5 on page 89).

Without the Unaligned Exception Option (page 99), the two least significant bits of the 
address are ignored. A reference to an address that is not 0 mod 4 produces the same 
result as a reference to the address with the least significant bits cleared. With the Un-
aligned Exception Option, such an access raises an exception.

Operation

vAddr ← AR[s] + (AR[t])
Store32 (vAddr, FR[r])
AR[s] ← vAddr

Exceptions

Memory Store Group (see page 245)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 1 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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SUB Subtract
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SUB ar, as, at

Description

SUB calculates the two’s complement 32-bit difference of address registers as and at. 
The low 32 bits of the difference are written to address register ar. Arithmetic overflow is 
not detected.

Operation

AR[r] ← AR[s] − AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 1 0 0 0 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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Subtract Single SUB.S
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

SUB.S fr, fs, ft

Description

SUB.S computes the IEEE754 single-precision difference of the contents of floating-
point registers fs and ft and writes the result to floating-point register fr.

Operation

FR[r] ← FR[s] −s FR[t]

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 1 1 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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SUBX2 Subtract with Shift by 1
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SUBX2 ar, as, at

Description

SUBX2 calculates the two’s complement 32-bit difference of address register as shifted 
left by 1 bit and address register at. The low 32 bits of the difference are written to 
address register ar. Arithmetic overflow is not detected.

SUBX2 is frequently used as part of sequences to multiply by small constants.

Operation

AR[r] ← (AR[s]30..0||0) − AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 1 0 1 0 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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Subtract with Shift by 2 SUBX4
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SUBX4 ar, as, at

Description

SUBX4 calculates the two’s complement 32-bit difference of address register as shifted 
left by two bits and address register at. The low 32 bits of the difference are written to 
address register ar. Arithmetic overflow is not detected.

SUBX4 is frequently used as part of sequences to multiply by small constants.

Operation

AR[r] ← (AR[s]29..0||02) − AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 0 0 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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SUBX8 Subtract with Shift by 3
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

SUBX8 ar, as, at

Description

SUBX8 calculates the two’s complement 32-bit difference of address register as shifted 
left by three bits and address register at. The low 32 bits of the difference are written to 
address register ar. Arithmetic overflow is not detected.

SUBX8 is frequently used as part of sequences to multiply by small constants.

Operation

AR[r] ← (AR[s]28..0||03) − AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 0 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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System Call SYSCALL
Instruction Word (RRR)

Required Configuration Option

Exception Option (See Section 4.4.1 on page 82)

Assembler Syntax

SYSCALL

Description

When executed, the SYSCALL instruction raises a system-call exception, redirecting ex-
ecution to an exception vector (see Section 4.4.1 on page 82). Therefore, SYSCALL in-
structions never complete. EPC[1] contains the address of the SYSCALL and ICOUNT is 
not incremented. The system call handler should add 3 to EPC[1] before returning from 
the exception to continue execution.

The program may pass parameters to the system-call handler in the registers. There are 
no bits in SYSCALL instruction reserved for this purpose. See Section 8.2.2 “System 
Calls” on page 597 for a description of software conventions for system call parameters.

Operation

Exception (SyscallCause)

Exceptions

EveryInst Group (see page 244)
GenExcep(SyscallCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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TRUNC.S Truncate Single to Fixed
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

TRUNC.S ar, fs, 0..15

Description

TRUNC.S converts the contents of floating-point register fs from single-precision to 
signed integer format, rounding toward 0. The single-precision value is first scaled by a 
power of two constant value encoded in the t field, with 0..15 representing 1.0, 2.0, 4.0, 
…, 32768.0. The scaling allows for a fixed point notation where the binary point is at the 
right end of the integer for t=0, and moves to the left as t increases until for t=15 there 
are 15 fractional bits represented in the fixed point number. For positive overflow (value 
≥ 32'h7fffffff), positive infinity, or NaN, 32'h7fffffff is returned; for negative 
overflow (value ≤ 32'h80000000) or negative infinity, 32'h80000000 is returned. The 
result is written to address register ar.

Operation

AR[r] ← truncs(FR[s] ×s pows(2.0,t))

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 0 0 1 1 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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Compare Single Unordered or Equal UEQ.S
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

UEQ.S br, fs, ft

Description

UEQ.S compares the contents of floating-point registers fs and ft. If the values are 
equal or unordered then Boolean register br is set to 1, otherwise br is set to 0. Accord-
ing to IEEE754, +0 and −0 compare as equal. IEEE754 floating-point values are 
unordered if either of them is a NaN.

Operation

BRr ← isNaN(FR[s]) or isNaN(FR[t]) or (FR[s] =s FR[t])

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 1 1 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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UFLOAT.S Convert Unsigned Fixed to Single
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

UFLOAT.S fr, as, 0..15

Description

UFLOAT.S converts the contents of address register as from unsigned integer to single-
precision format, rounding according to the current rounding mode. The converted inte-
ger value is then scaled by a power of two constant value encoded in the t field, with 
0..15 representing 1.0, 0.5, 0.25, …, 1.0÷s32768.0. The scaling allows for a fixed point 
notation where the binary point is at the right end of the integer for t=0, and moves to 
the left as t increases until for t=15 there are 15 fractional bits represented in the fixed 
point number. The result is written to floating-point register fr.

Operation

FR[r] ← ufloats(AR[s]) ×s pows(2.0,-t))

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 0 1 1 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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Compare Single Unord or Less Than or Equal ULE.S
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

ULE.S br, fs, ft

Description

ULE.S compares the contents of floating-point registers fs and ft. If the contents of fs 
are less than or equal to or unordered with the contents of ft, then Boolean register br 
is set to 1, otherwise br is set to 0. IEEE754 specifies that +0 and −0 compare as equal. 
IEEE754 floating-point values are unordered if either of them is a NaN.

Operation

BRr ← isNaN(FR[s]) or isNaN(FR[t]) or (FR[s] ≤s FR[t])

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 1 1 1 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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ULT.S Compare Single Unordered or Less Than
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

ULT.S br, fs, ft

Description

ULT.S compares the contents of floating-point registers fs and ft. If the contents of fs 
are less than or unordered with the contents of ft, then Boolean register br is set to 1, 
otherwise br is set to 0. IEEE754 specifies that +0 and −0 compare as equal. IEEE754 
floating-point values are unordered if either of them is a NaN.

Operation

BRr ← isNaN(FR[s]) or isNaN(FR[t]) or (FR[s] <s FR[t])

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 1 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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Unsigned Multiply UMUL.AA.*
Instruction Word (RRR)

Required Configuration Option

MAC16 Option (See Section 4.3.7 on page 60)

Assembler Syntax

UMUL.AA.* as, at

Where * expands as follows:
UMUL.AA.LL - for (half=0) 
UMUL.AA.HL - for (half=1) 
UMUL.AA.LH - for (half=2) 
UMUL.AA.HH - for (half=3) 

Description

UMUL.AA.* performs an unsigned multiply of half of each of the address registers as 
and at, producing a 32-bit result. The result is zero-extended to 40 bits and written to 
the MAC16 accumulator.

Operation

m1 ← if half0 then AR[s]31..16 else AR[s]15..0
m2 ← if half1 then AR[t]31..16 else AR[t]15..0
ACC ← (024||m1) × (024||m2)

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 1 1 0 0 half 0 0 0 0 s t 0 1 0 0

4 4 4 4 4 4
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UN.S Compare Single Unordered
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

UN.S br, fs, ft

Description

UN.S sets Boolean register br to 1 if the contents of either floating-point register fs or 
ft is a IEEE754 NaN; otherwise br is set to 0.

Operation

BRr ← isNaN(FR[s]) or isNaN(FR[t])

Exceptions

EveryInst Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 1 1 0 1 1 r s t 0 0 0 0

4 4 4 4 4 4
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Truncate Single to Fixed Unsigned UTRUNC.S
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

UTRUNC.S ar, fs, 0..15

Description

UTRUNC.S converts the contents of floating-point register fs from single-precision to 
unsigned integer format, rounding toward 0. The single-precision value is first scaled by 
a power of two constant value encoded in the t field, with 0..15 representing 1.0, 2.0, 
4.0, …, 32768.0. The scaling allows for a fixed point notation where the binary point is at 
the right end of the integer for t=0, and moves to the left as t increases until for t=15 
there are 15 fractional bits represented in the fixed point number. For positive overflow 
(value ≥ 32'hffffffff), positive infinity, or NaN, 32'hffffffff is returned; for neg-
ative numbers or negative infinity, 32'h80000000 is returned. The result is written to 
address register ar.

Operation

AR[r] ← utruncs(FR[s] ×s pows(2.0,t))

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 0 1 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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WAITI Wait for Interrupt
Instruction Word (RRR)

Required Configuration Option

Interrupt Option (See Section 4.4.4 on page 100)

Assembler Syntax

WAITI 0..15

Description

WAITI sets the interrupt level in PS.INTLEVEL to imm4 and then, on some Xtensa ISA 
implementations, suspends processor operation until an interrupt occurs. WAITI is typi-
cally used in an idle loop to reduce power consumption. CCOUNT continues to increment 
during suspended operation, and a CCOMPARE interrupt will wake the processor.

When an interrupt is taken during suspended operation, EPC[i] will have the address 
of the instruction following WAITI. An implementation is not required to enter suspended 
operation and may leave suspended operation and continue execution at the following 
instruction at any time. Usually, therefore, the WAITI instruction should be within a loop.

The combination of setting the interrupt level and suspending operation avoids a race 
condition where an interrupt between the interrupt level setting and the suspension of 
operation would be ignored until a second interrupt occurred.

WAITI is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
PS.INTLEVEL ← imm4

endif

Exceptions

EveryInst Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 0 0 1 1 1 imm4 0 0 0 0 0 0 0 0

4 4 4 4 4 4
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Write Data TLB Entry WDTLB
Instruction Word (RRR)

Required Configuration Option

Region Translation Option (page 156) or the MMU Option (page 158)

Assembler Syntax

WDTLB at, as

Description

WDTLB uses the contents of address register as to specify a data TLB entry and writes 
the contents of address register at into that entry. See Section 4.6 on page 138 for in-
formation on the address and result register formats for specific memory protection and 
translation options. The point at which the data TLB write is effected is implementation-
specific. Any translation that would be affected by this write before the execution of a 
DSYNC instruction is therefore undefined.

WDTLB is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
(vpn, ei, wi) ← SplitDataTLBEntrySpec(AR[s])
(ppn, sr, ring, ca) ← SplitDataEntry(wi, AR[t])
DataTLB[wi][ei].ASID ← ASID(ring)
DataTLB[wi][ei].VPN ← vpn
DataTLB[wi][ei].PPN ← ppn
DataTLB[wi][ei].SR ← sr
DataTLB[wi][ei].CA ← ca

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 0 0 0 0 1 1 1 0 s t 0 0 0 0

4 4 4 4 4 4
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WER Write External Register
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

WER at, as

Description

WER writes one of a set of "External Registers". It is in some ways similar to the WSR.* 
instruction except that the registers being written are not defined by the Xtensa ISA and 
are conceptually outside the processor core. They are written through processor ports.

Address register as is used to determine which register is to be written and address reg-
ister at provides the write data. When no External Register is addressed by the value in 
address register as, no write occurs. The entire address space is reserved for use by 
Tensilica. RER and WER are managed by the processor core so that the requests appear 
on the processor ports in program order. External logic is responsible for extending that 
order to the registers themselves.

WER is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
Write External Register as defined outside the processor.

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 0 0 0 0 0 1 1 1 s t 0 0 0 0

4 4 4 4 4 4
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Move AR to FR WFR
Instruction Word (RRR)

Required Configuration Option

Floating-Point Coprocessor Option (See Section 4.3.11 on page 67)

Assembler Syntax

WFR fr, as

Description

WFR moves the contents of address register as to floating-point register fr. The move is 
non-arithmetic; no floating-point exceptions are raised.

Operation

FR[r] ← AR[s]

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor0Disabled) if Coprocessor Option

23 20 19 16 15 12 11 8 7 4 3 0

1 1 1 1 1 0 1 0 r s 0 1 0 1 0 0 0 0

4 4 4 4 4 4
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WITLB Write Instruction TLB Entry
Instruction Word (RRR)

Required Configuration Option

Region Translation Option (page 156) or the MMU Option (page 158)

Assembler Syntax

WITLB at, as

Description

WITLB uses the contents of address register as to specify an instruction TLB entry and 
writes the contents of address register at into that entry. See Section 4.6 on page 138 
for information on the address and result register formats for specific memory protection 
and translation options. The point at which the instruction TLB write is effected is imple-
mentation-specific. Any translation that would be affected by this write before the execu-
tion of an ISYNC instruction is therefore undefined.

WITLB is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
(vpn, ei, wi) ← SplitInstTLBEntrySpec(AR[s])
(ppn, sr, ring, ca) ← SplitInstEntry(wi, AR[t])
InstTLB[wi][ei].ASID ← ASID(ring)
InstTLB[wi][ei].VPN ← vpn
InstTLB[wi][ei].PPN ← ppn
InstTLB[wi][ei].SR ← sr
InstTLB[wi][ei].CA ← ca

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(PrivilegedCause) if Exception Option

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 1 0 0 0 0 0 1 1 0 s t 0 0 0 0

4 4 4 4 4 4
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Write Special Register WSR.*
Instruction Word (RSR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

WSR.* at

WSR at, *

WSR at, 0..255

Description

WSR.* writes the special registers that are described in Section 3.8.10 “Processor Con-
trol Instructions” on page 45. See Section 5.3 on page 208 for more detailed information 
on the operation of this instruction for each Special Register.

The contents of address register at are written to the special register designated by the 
8-bit sr field of the instruction word. The name of the Special Register is used in place 
of the ‘*’ in the assembler syntax above and the translation is made to the 8-bit sr field 
by the assembler.

WSR is an assembler macro for WSR.* that provides compatibility with the older versions 
of the instruction containing either the name or the number of the Special Register.

The point at which WSR.* to certain registers affects subsequent instructions is not al-
ways defined (SAR and ACC are exceptions). In these cases, the Special Register Tables 
in Section 5.3 on page 208 explain how to ensure the effects are seen by a particular 
point in the instruction stream (typically involving the use of one of the ISYNC, RSYNC, 
ESYNC, or DSYNC instructions). A WSR.* followed by an RSR.* to the same register 
should be separated with an ESYNC to guarantee the value written is read back. A 
WSR.PS followed by RSIL also requires an ESYNC.

WSR.* with Special Register numbers ≥ 64 is privileged. A WSR.* for an unconfigured 
register generally will raise an illegal instruction exception.

23 20 19 16 15 8 7 4 3 0

0 0 0 1 0 0 1 1 sr t 0 0 0 0

4 4 8 4 4
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WSR.* Write Special Register
Operation

sr ← if msbFirst then s||r else r||s
if sr ≥ 64 and CRING ≠ 0 then

Exception (PrivilegedInstructionCause)
else

see the Special Register Tables in Section 5.3 on page 208
endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(IllegalInstructionCause) if Exception Option
GenExcep(PrivilegedCause) if Exception Option
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Write User Register WUR.*
Instruction Word (RSR)

Required Configuration Option

No Option - instructions created from the TIE language (See Section 4.3.9.2 “Coproces-
sor Context Switch” on page 64)

Assembler Syntax

WUR.* at

WUR at,*

Description

WUR.* writes TIE state that has been grouped into 32-bit quantities by the TIE 
user_register statement. The name in the user_register statement replaces the 
“*” in the instruction name and causes the correct register number to be placed in the st 
field of the encoded instruction. The contents of address register at are written to the 
TIE user_register designated by the 8-bit sr field of the instruction word.

WUR is an assembler macro for WUR.* that provides compatibility with the older version 
of the instruction.

Operation

user_register[sr] ← AR[t]

Exceptions

EveryInstR Group (see page 244)
GenExcep(Coprocessor*Disabled) if Coprocessor Option

23 20 19 16 15 8 7 4 3 0

1 1 1 1 0 0 1 1 sr t 0 0 0 0

4 4 8 4 4
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XOR Bitwise Logical Exclusive Or
Instruction Word (RRR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50)

Assembler Syntax

XOR ar, as, at

Description

XOR calculates the bitwise logical exclusive or of address registers as and at. The 
result is written to address register ar.

Operation

AR[r] ← AR[s] xor AR[t]

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 0 1 1 0 0 0 0 r s t 0 0 0 0

4 4 4 4 4 4
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Boolean Exclusive Or XORB
Instruction Word (RRR)

Required Configuration Option

Boolean Option (See Section 4.3.10 on page 65)

Assembler Syntax

XORB br, bs, bt

Description

XORB performs the logical exclusive or of Boolean registers bs and bt and writes the 
result to Boolean register br.

When the sense of one of the source Booleans is inverted (0 → true, 1 → false), use an 
inverted test of the result. When the sense of both of the source Booleans is inverted, 
use a non-inverted test of the result.

Operation

BRr ← BRs xor BRt

Exceptions

EveryInstR Group (see page 244)

23 20 19 16 15 12 11 8 7 4 3 0

0 1 0 0 0 0 1 0 r s t 0 0 0 0

4 4 4 4 4 4
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XSR.* Exchange Special Register
Instruction Word (RSR)

Required Configuration Option

Core Architecture (See Section 4.2 on page 50) (added in T1040)

Assembler Syntax

XSR.* at

XSR at, *

XSR at, 0..255

Description

XSR.* simultaneously reads and writes the special registers that are described in 
Section 3.8.10 “Processor Control Instructions” on page 45. See Section 5.3 on 
page 208 for more detailed information on the operation of this instruction for each 
Special Register.

The contents of address register at and the Special Register designated by the immedi-
ate in the 8-bit sr field of the instruction word are both read. The read address register 
value is then written to the Special Register, and the read Special Register value is writ-
ten to at. The name of the Special Register is used in place of the ‘*’ in the assembler 
syntax above and the translation is made to the 8-bit sr field by the assembler.

XSR is an assembler macro for XSR.*, which provides compatibility with the older ver-
sions of the instruction containing either the name or the number of the Special Register.

The point at which XSR.* to certain registers affects subsequent instructions is not al-
ways defined (SAR and ACC are exceptions). In these cases, the Special Register Tables 
in Section 5.3 on page 208 explain how to ensure the effects are seen by a particular 
point in the instruction stream (typically involving the use of one of the ISYNC, RSYNC, 
ESYNC, or DSYNC instructions). An XSR.* followed by an RSR.* to the same register 
should be separated with an ESYNC to guarantee the value written is read back. An 
XSR.PS followed by RSIL also requires an ESYNC. In general, the restrictions on XSR.* 
include the union of the restrictions of the corresponding RSR.* and WSR.*.

23 20 19 16 15 8 7 4 3 0

0 1 1 0 0 0 0 1 sr t 0 0 0 0

4 4 8 4 4
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XSR.* with Special Register numbers ≥ 64 is privileged. An XSR.* for an unconfigured 
register generally will raise an illegal instruction exception.

Operation

sr ← if msbFirst then s||r else r||s
if sr ≥ 64 and CRING ≠ 0 then

Exception (PrivilegedInstructionCause)
else

t0 ← AR[t]
t1 ← see RSR frame of the Tables in Section 5.3 on page 208
see WSR frame of the Tables in Section 5.3 on page 208 ← t0
AR[t] ← t1

endif

Exceptions

EveryInstR Group (see page 244)
GenExcep(IllegalInstructionCause) if Exception Option
GenExcep(PrivilegedCause) if Exception Option
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Chapter 7. Instruction Formats and Opcodes
7. Instruction Formats and Opcodes

7.1 Formats

The following sections show the named opcode formats for instruction encodings. The 
field names in these formats are used in the opcode tables in Section 7.3.1. The format 
names are used throughout this document. Each chart shows both big-endian and little-
endian encodings with bits numbered appropriately for that endianness. The vertical 
bars in the formats indicate the points at which the opcode is separated, reversed in or-
der, and reassembled to arrive at the opposite endianness format.

7.1.1 RRR

7.1.2 RRI4

0 3 4 7 8 11 12 15 16 19 20 23

Big End. op0 t s r op1 op2

4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

Little End. op2 op1 r s t op0

4 4 4 4 4 4

0 3 4 7 8 11 12 15 16 19 20 23

Big End. op0 t s r op1 imm4

4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

Little End. imm4 op1 r s t op0

4 4 4 4 4 4
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7.1.3 RRI8

7.1.4 RI16

7.1.5 RSR

0 3 4 7 8 11 12 15 16 23

Big End. op0 t s r imm8

4 4 4 4 8

23 16 15 12 11 8 7 4 3 0

Little End. imm8 r s t op0

8 4 4 4 4

0 3 4 7 8 23

Big End. op0 t imm16

4 4 16

23 8 7 4 3 0

Little End. imm16 t op0

16 4 4

0 3 4 7 8 15 16 19 20 23

Big End. op0 t rs op1 op2

4 4 8 4 4

23 20 19 16 15 7 4 3 0

Little End. op2 op1 rs t op0

4 4 8 4 4
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7.1.6 CALL

7.1.7 CALLX

7.1.8 BRI8

0 3 4 5 6 23

Big End. op0 n offset

4 2 18

23 6 5 4 3 0

Little End. offset n op0

18 2 4

0 3 4 5 6 7 8 11 12 15 16 19 20 23

Big End. op0 n m s r op1 op2

4 2 2 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

Little End. op2 op1 r s m n op0

4 4 4 4 2 2 4

0 3 4 5 6 7 8 11 12 15 16 23

Big End. op0 n m s r imm8

4 2 2 4 4 8

23 16 15 12 11 8 7 4 3 0

Little End. imm8 r s m n op0

8 4 4 2 2 4
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7.1.9 BRI12

7.1.10 RRRN

7.1.11 RI7

0 3 4 5 6 7 8 11 12 23

Big End. op0 n m s imm12

4 2 2 4 12

23 12 11 8 7 4 3 0

Little End. imm12 s m n op0

12 4 2 2 4

0 3 4 7 8 11 12 15

Big End. op0 t s r

4 4 4 4

15 12 11 8 7 4 3 0

Little End. r s t op0

4 4 4 4

0 3 4 7 8 11 12 15

Big End. op0 i imm76..4 s imm73..0

4 4 4 4

15 12 11 8 7 6 4 3 0

Little End. imm73..0 s i imm76..4 op0

4 4 4 4
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7.1.12 RI6

7.2 Instruction Fields

0 3 4 7 8 11 12 15

Big End. op0 i z imm65..4 s imm63..0

4 4 4 4

15 12 11 8 7 6 5 4 3 0

Little End. imm63..0 s i z imm65..4 op0

4 4 4 4

Table 7–191.  Uses Of Instruction Fields 
Field Definition
op0 Major opcode
op1 4-bit sub-opcode for 24-bit instructions
op2 4-bit sub-opcode for 24-bit instructions
r AR target (result), BR target (result), 

4-bit immediate, 
4-bit sub-opcode

s AR source, BR source
AR target

t AR target, BR target, 
AR source, BR source, 
4-bit sub-opcode

n Register window increment,
2-bit sub-opcode,
n||00 is used as a AR target on CALLn/CALLXn

m 2-bit sub-opcode
i 1-bit sub-opcode
z 1-bit sub-opcode
imm6 6-bit immediate (PC-relative offset)
imm7 7-bit immediate (for MOVI.N)
imm8 8-bit immediate
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7.3 Opcode Encodings

The following tables show the instruction-field bit values assigned to specific opcodes. 
The following special notation is used: 

The table titles tell the name of the parent opcode and what table the parent is in, 
the formats for instructions in this table, and in parentheses at the end, what fields 
still vary for items listed in this table. In the upper left corner of the table is the field 
decoded in the table. Below it and to the right are templates which the field matches 
for the corresponding row or column.
Non-italic opcodes are instructions. These have page numbers where the corre-
sponding instruction is described in more detail.
Italics opcodes are not instructions, but are parents to other opcodes. These have 
table numbers that show further decode into instructions or other parents to other 
opcodes.
Some entries have further conditions after them such as (s=0), which means that the 
s field must be zero. All other opcodes are illegal; therefore another table seems 
unnecessary.
The bit-range of opcodes that use more than one table entry is delimited by vertical 
bars. 

imm12 12-bit immediate
imm16 16-bit immediate
offset 18-bit PC-relative offset

Table 7–191.  Uses Of Instruction Fields (continued)
Field Definition
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Subscripts on opcodes indicate the architectural option(s) in which the opcode is 
implemented. The subscripts and their associated architectural options are:
- C—Instruction Cache or Data Cache Options
- D—MAC16 Option
- F—Floating-Point Coprocessor Option
- I—32-Bit Integer Multiply/Divide Option
- L—Instruction or Data Cache Index Lock Option
- M—MMU Option
- N—Code Density (Narrow instructions) Option
- P—Coprocessor Option
- S—Speculation Option
- U—Miscellaneous Operations Option
- W—Windowed Registers Option
- X—Exception or Interrupt Options
- Y—Multiprocessor Synchronization Option

7.3.1 Opcode Maps

Table 7–192.  Whole Opcode Space 
op0 xx00 xx01 xx10 xx11
00xx QRST — Table 7–193 L32R — page 382 LSAI — Table 7–216 LSCIP — Table 7–220

01xx MAC16D — Table 7–221 CALLN — Table 7–232 SI — Table 7–233 B — Table 7–238

10xx L32I.NN — page 380 S32I.NN — page 512 ADD.NN — page 249 ADDI.NN — page 252

11xx ST2N — Table 7–239 ST3N — Table 7–240 reserved reserved

Table 7–193.  QRST (from Table 7–192) Formats RRR, CALLX, and RSR (t, s, r, op2 vary) 
op1 xx00 xx01 xx10 xx11
00xx RST0 — Table 7–194 RST1 — Table 7–205 RST2 — Table 7–209 RST3 — Table 7–210

01xx EXTUI — page 344 CUST0 — Section 7.3.2 CUST1 — Section 7.3.2

10xx LSCXP — Table 7–211 LSC4 — Table 7–212 FP0F — Table 7–213 FP1F — Table 7–215

11xx reserved reserved reserved reserved
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Table 7–194.  RST0 (from Table 7–193) Formats RRR and CALLX (t, s, r vary) 
op2 xx00 xx01 xx10 xx11
00xx ST0 — Table 7–195 AND — page 259 OR — page 466 XOR — page 564

01xx ST1 — Table 7–202 TLB — Table 7–203 RT0 — Table 7–204 reserved

10xx ADD — page 248 ADDX2 — page 254 ADDX4 — page 255 ADDX8 — page 256

11xx SUB — page 542 SUBX2 — page 544 SUBX4 — page 545 SUBX8 — page 546

Table 7–195.  ST0 (from Table 7–194 Formats RRR and CALLX (t, s vary) 
r xx00 xx01 xx10 xx11

00xx SNM0 — Table 7–196 MOVSPW — page 427 SYNC — Table 7–199 RFEIX — Table 7–200

01xx BREAKX — page 293 SYSCALLX — page 547 (s,t=0) RSILX — page 498 WAITIX — page 556 (t=0)

10xx ANY4P — page 262 ALL4P — page 257 ANY8P — page 263 ALL8P — page 258

11xx reserved reserved reserved reserved

Table 7–196.  SNM0 (from Table 7–195) Format CALLX (n, s vary) 
m 00 01 10 11

ILL — page 358 (s,n=0) reserved JR — Table 7–197 CALLX — Table 7–198

Table 7–197.  JR (from Table 7–196) Format CALLX (s varies) 
n 00 01 10 11

RET — page 478 (s=0) RETWW — page 480 (s=0) JX — page 368 reserved

Table 7–198.  CALLX (from Table 7–196) Format CALLX (s varies) 
n 00 01 10 11

CALLX0 — page 304 CALLX4W — page 305 CALLX8W — page 307 CALLX12W — page 309

Table 7–199.  SYNC (from Table 7–195) Format RRR (s varies) 
t xx00 xx01 xx10 xx11

00xx ISYNC — page 364 (s=0) RSYNC — page 502 (s=0) ESYNC — page 342 (s=0) DSYNC — page 339 (s=0)

01xx reserved reserved reserved reserved

10xx EXCW — page 343 (s=0) reserved reserved reserved

11xx MEMW — page 409 (s=0) EXTW — page 345 (s=0) reserved reserved
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Table 7–200.  RFEI (from Table 7–195) Format RRR (s varies) 
t xx00 xx01 xx10 xx11

00xx RFETX — Table 7–201 RFIX — page 488 RFME — page 489 (s=0) reserved

01xx reserved reserved reserved reserved

10xx reserved reserved reserved reserved

11xx reserved reserved reserved reserved

Table 7–201.  RFET (from Table 7–200) Format RRR (no bits vary) 
s xx00 xx01 xx10 xx11

00xx RFEX — page 487 RFUEX — page 491 RFDEX — page 485 reserved

01xx RFWOW — page 492 RFWUW — page 493 reserved reserved

10xx reserved reserved reserved reserved

11xx reserved reserved reserved reserved

Table 7–202.  ST1 (from Table 7–194) Format RRR (t, s vary) 
r xx00 xx01 xx10 xx11

00xx SSR — page 539 (t=0) SSL — page 538 (t=0) SSA8L — page 532 (t=0) SSA8B — page 531 (t=0)

01xx SSAI — page 533 (t=0) reserved RER — page 477 WER — page 558

10xx ROTWW — page 496 (s=0) reserved reserved reserved

11xx reserved reserved NSAU — page 461 NSAUU — page 462

Table 7–203.  TLB (from Table 7–194) Format RRR (t, s vary) 
r xx00 xx01 xx10 xx11

00xx reserved reserved reserved RITLB0 — page 494

01xx IITLB — page 355 (t=0) PITLB — page 470 WITLB — page 560 RITLB1 — page 495

10xx reserved reserved reserved RDTLB0 — page 473

11xx IDTLB — page 348 (t=0) PDTLB — page 469 WDTLB — page 557 RDTLB1 — page 474
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Table 7–204.  RT0 (from Table 7–194) Format RRR (t, r vary) 
s xx00 xx01 xx10 xx11

00xx NEG — page 457 ABS — page 246 reserved reserved

01xx reserved reserved reserved reserved

10xx reserved reserved reserved reserved

11xx reserved reserved reserved reserved

Table 7–205.  RST1 (from Table 7–193) Format RRR (t, s, r vary) 
op2 xx00 xx01 xx10 xx11
00xx SLLI — page 525 SRAI — page 527

01xx SRLI — page 530 reserved XSR — page 566 ACCER — Table 7–206

10xx SRC — page 528 SRL — page 529 (s=0) SLL — page 524 (t=0) SRA — page 526 (s=0)

11xx MUL16U — page 437 MUL16S — page 436 reserved IMP — Table 7–207

Table 7–206.  ACCER (from Table 7–205) Format RRR (t, s vary) 
op2 xx00 xx01 xx10 xx11
00xx RER — page 477

01xx
10xx WER — page 558

11xx

Table 7–207.  IMP (from Table 7–205) Format RRR (t, s vary) (Section 7.3.3) 
r xx00 xx01 xx10 xx11

00xx LICT — page 388 SICT — page 519 LICW — page 390 SICW — page 521

01xx reserved reserved reserved reserved

10xx LDCT — page 384 SDCT — page 516 reserved reserved

11xx reserved reserved RFDX — Table 7–208 reserved
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Table 7–208.  RFDX (from Table 7–207) Format RRR (s varies) 
t xx00 xx01 xx10 xx11

00xx RFDO — page 486 (s=0) RFDD — page 484 (s=0,1) reserved reserved

01xx reserved reserved reserved reserved

10xx reserved reserved reserved reserved

11xx reserved reserved reserved reserved

Table 7–209.  RST2 (from Table 7–193) Format RRR (t, s, r vary) 
op2 xx00 xx01 xx10 xx11
00xx ANDBP — page 260 ANDBCP — page 261 ORBP — page 467 ORBCP — page 468

01xx XORBP — page 565 reserved reserved reserved

10xx MULLI — page 450 reserved MULUHI — page 456 MULSHI — page 455

11xx QUOUI — page 472 QUOSI — page 471 REMUI — page 476 REMSI — page 475

Table 7–210.  RST3 (from Table 7–193) Formats RRR and RSR (t, s, r vary) 
op2 xx00 xx01 xx10 xx11
00xx RSR — page 500 WSR — page 561 SEXTU — page 518 CLAMPSU — page 312

01xx MINU — page 410 MAXU — page 407 MINUU — page 411 MAXUU — page 408

10xx MOVEQZ — page 415 MOVNEZ — page 425 MOVLTZ — page 423 MOVGEZ — page 419

11xx MOVFP — page 417 MOVTP — page 428 RUR — page 503 WUR — page 563

Table 7–211.  LSCX (from Table 7–193) Format RRR (t, s, r vary) 
op2 xx00 xx01 xx10 xx11
00xx LSXF — page 402 LSXUF — page 404 reserved reserved

01xx SSXF — page 540 SSXUF — page 534 reserved reserved

10xx reserved reserved reserved reserved

11xx reserved reserved reserved reserved
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Table 7–212.  LSC4 (from Table 7–193) Format RRI4 (t, s, r vary) 
op2 xx00 xx01 xx10 xx11
00xx L32E — page 376 reserved reserved reserved

01xx S32E — page 508 reserved reserved reserved

10xx reserved reserved reserved reserved

11xx reserved reserved reserved reserved

Table 7–213.  FP0 (from Table 7–193) Format RRR (t, s, r vary) 
op2 xx00 xx01 xx10 xx11
00xx ADD.SF — page 250 SUB.SF — page 543 MUL.SF — page 435 reserved

01xx MADD.SF — page 406 MSUB.SF — page 430 reserved reserved

10xx ROUND.SF — page 497 TRUNC.SF — page 548 FLOOR.SF — page 347 CEIL.SF — page 311

11xx FLOAT.SF — page 346 UFLOAT.SF — page 550 UTRUNC.SF — page 555 FP1OPF — Table 7–214

Table 7–214.  FP1OP (from Table 7–213) Format RRR (s, r vary) 
t xx00 xx01 xx10 xx11

00xx MOV.SF — page 414 ABS.SF — page 247 reserved reserved

01xx RFRF — page 490 WFRF — page 559 NEG.SF — page 458 reserved

10xx reserved reserved reserved reserved

11xx reserved reserved reserved reserved

Table 7–215.  FP1 (from Table 7–193) Format RRR (t, s, r vary) 
op2 xx00 xx01 xx10 xx11
00xx reserved UN.SF — page 554 OEQ.SF — page 463 UEQ.SF — page 549

01xx OLT.SF — page 465 ULT.SF — page 552 OLE.SF — page 464 ULE.SF — page 551

10xx MOVEQZ.SF — page 416 MOVNEZ.SF — page 426 MOVLTZ.SF — page 424 MOVGEZ.SF — page 420

11xx MOVF.SF — page 418 MOVT.SF — page 429 reserved reserved
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Table 7–216.  LSAI (from Table 7–192) Formats RRI8 and RRI4 (t, s, imm8 vary) 
r xx00 xx01 xx10 xx11

00xx L8UI — page 369 L16UI — page 372 L32I — page 378 reserved

01xx S8I — page 504 S16I — page 505 S32I — page 510 CACHEC — Table 7–217

10xx reserved L16SI — page 370 MOVI — page 421 L32AIY — page 374

11xx ADDI — page 251 ADDMI — page 253 S32C1IY — page 506 S32RIY — page 514

Table 7–217.  CACHE (from Table 7–216) Formats RRI8 and RRI4 (s, imm8 vary) 
t xx00 xx01 xx10 xx11

00xx DPFRC — page 331 DPFWC — page 335 DPFROC — page 333 DPFWOC — page 337

01xx DHWBC — page 317 DHWBIC — page 319 DHIC — page 313 DIIC — page 321

10xx DCEC — Table 7–218 reserved reserved reserved

11xx IPFC — page 360 ICEC — Table 7–219 IHIC — page 349 IIIC — page 353

Table 7–218.  DCE (from Table 7–217) Format RRI4 (s, imm4 vary) 
op1 xx00 xx01 xx10 xx11
00xx DPFLL — page 329 reserved DHUL — page 315 DIUL — page 323

01xx DIWBC — page 325 DIWBIC — page 327 reserved reserved

10xx reserved reserved reserved reserved

11xx reserved reserved reserved reserved

Table 7–219.  ICE (from Table 7–217) Format RRI4 (s, imm4 vary) 
op1 xx00 xx01 xx10 xx11
00xx IPFLL — page 362 reserved IHUL — page 351 IIUL — page 356

01xx reserved reserved reserved reserved

10xx reserved reserved reserved reserved

11xx reserved reserved reserved reserved
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Table 7–220.  LSCI (from Table 7–192) Format RRI8 (t, s, imm8 vary) 
r xx00 xx01 xx10 xx11

00xx LSIF — page 398 reserved reserved reserved

01xx SSIF — page 534 reserved reserved reserved

10xx LSIUF — page 400 reserved reserved reserved

11xx SSIUF — page 536 reserved reserved reserved

Table 7–221.  MAC16 (from Table 7–192) Format RRR (t, s, r, op1 vary) 
op2 xx00 xx01 xx10 xx11
00xx MACID — Table 7–222 MACCD — Table 7–226 MACDD — Table 7–224 MACAD — Table 7–225

01xx MACIA — Table 7–223 MACCA — Table 7–227 MACDA — Table 7–228 MACAA — Table 7–229

10xx MACI — Table 7–230 MACC — Table 7–231 reserved reserved

11xx reserved reserved reserved reserved

Table 7–222.  MACID (from Table 7–221) Format RRR (t, s, r vary) 
op1 xx00 xx01 xx10 xx11
00xx reserved reserved reserved reserved

01xx reserved reserved reserved reserved

10xx MULA.DD.LL.LDINC — 
page 448

MULA.DD.HL.LDINC — 
page 448

MULA.DD.LH.LDINC — 
page 448

MULA.DD.HH.LDINC — 
page 448

11xx reserved reserved reserved reserved

Table 7–223.  MACIA (from Table 7–221) Format RRR (t, s, r vary) 
op1 xx00 xx01 xx10 xx11
00xx reserved reserved reserved reserved

01xx reserved reserved reserved reserved

10xx MULA.DA.LL.LDINC — 
page 443

MULA.DA.HL.LDINC — 
page 443

MULA.DA.LH.LDINC — 
page 443

MULA.DA.HH.LDINC — 
page 443

11xx reserved reserved reserved reserved
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Table 7–224.  MACDD (from Table 7–221) Format RRR (t, s, r vary) 
op1 xx00 xx01 xx10 xx11
00xx reserved reserved reserved reserved

01xx MUL.DD.LL — page 434 MUL.DD.HL — page 434 MUL.DD.LH — page 434 MUL.DD.HH — page 434

10xx MULA.DD.LL — page 445 MULA.DD.HL — page 445 MULA.DD.LH — page 445 MULA.DD.HH — page 445

11xx MULS.DD.LL — page 454 MULS.DD.HL — page 454 MULS.DD.LH — page 454 MULS.DD.HH — page 454

Table 7–225.  MACAD (from Table 7–221) Format RRR (t, s, r vary) 
op1 xx00 xx01 xx10 xx11
00xx reserved reserved reserved reserved

01xx MUL.AD.LL — page 432 MUL.AD.HL — page 432 MUL.AD.LH — page 432 MUL.AD.HH — page 432

10xx MULA.AD.LL — page 439 MULA.AD.HL — page 439 MULA.AD.LH — page 439 MULA.AD.HH — page 439

11xx MULS.AD.LL — page 452 MULS.AD.HL — page 452 MULS.AD.LH — page 452 MULS.AD.HH — page 452

Table 7–226.  MACCD (from Table 7–221) Format RRR (t, s, r vary) 
op1 xx00 xx01 xx10 xx11
00xx reserved reserved reserved reserved

01xx reserved reserved reserved reserved

10xx MULA.DD.LL.LDDEC — 
page 446

MULA.DD.HL.LDDEC — 
page 446

MULA.DD.LH.LDDEC — 
page 446

MULA.DD.HH.LDDEC — 
page 446

11xx reserved reserved reserved reserved

Table 7–227.  MACCA (from Table 7–221) Format RRR (t, s, r vary) 
op1 xx00 xx01 xx10 xx11
00xx reserved reserved reserved reserved

01xx reserved reserved reserved reserved

10xx MULA.DA.LL.LDDEC — 
page 441

MULA.DA.HL.LDDEC — 
page 441

MULA.DA.LH.LDDEC — 
page 441

MULA.DA.HH.LDDEC — 
page 441

11xx reserved reserved reserved reserved
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Table 7–228.  MACDA (from Table 7–221) Format RRR (t, s, r vary) 
op1 xx00 xx01 xx10 xx11
00xx reserved reserved reserved reserved

01xx MUL.DA.LL — page 433 MUL.DA.HL — page 433 MUL.DA.LH — page 433 MUL.DA.HH — page 433

10xx MULA.DA.LL — page 440 MULA.DA.HL — page 440 MULA.DA.LH — page 440 MULA.DA.HH — page 440

11xx MULS.DA.LL — page 453 MULS.DA.HL — page 453 MULS.DA.LH — page 453 MULS.DA.HH — page 453

Table 7–229.  MACAA (from Table 7–221) Format RRR (t, s, r vary) 
op1 xx00 xx01 xx10 xx11
00xx UMUL.AA.LL — page 553 UMUL.AA.HL — page 553 UMUL.AA.LH — page 553 UMUL.AA.HH — page 553

01xx MUL.AA.LL — page 431 MUL.AA.HL — page 431 MUL.AA.LH — page 431 MUL.AA.HH — page 431

10xx MULA.AA.LL — page 438 MULA.AA.HL — page 438 MULA.AA.LH — page 438 MULA.AA.HH — page 438

11xx MULS.AA.LL — page 451 MULS.AA.HL — page 451 MULS.AA.LH — page 451 MULS.AA.HH — page 451

Table 7–230.  MACI (from Table 7–221) Format RRR (t, s, r vary) 
op1 xx00 xx01 xx10 xx11
00xx LDINC — page 387 (t=0) reserved reserved reserved

01xx reserved reserved reserved reserved

10xx reserved reserved reserved reserved

11xx reserved reserved reserved reserved

Table 7–231.  MACC (from Table 7–221) Format RRR (t, s, r vary) 
op1 xx00 xx01 xx10 xx11
00xx LDDEC — page 386 (t=0) reserved reserved reserved

01xx reserved reserved reserved reserved

10xx reserved reserved reserved reserved

11xx reserved reserved reserved reserved

Table 7–232.  CALLN (from Table 7–192) Format CALL (offset varies) 
n 00 01 10 11

CALL0 — page 297 CALL4 — page 298 CALL8 — page 300 CALL12 — page 302
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Table 7–233.  SI (from Table 7–192) Formats CALL, BRI8 and BRI12(offset varies) 
n 00 01 10 11

J — page 366 BZ — Table 7–234 BI0 — Table 7–235 BI1 — Table 7–236

Table 7–234.  BZ (from Table 7–233) Format BRI12 (s, imm12 vary) 
m 00 01 10 11

BEQZ — page 274 BNEZ — page 290 BLTZ — page 286 BGEZ — page 281

Table 7–235.  BI0 (from Table 7–233) Format BRI8 (s, r, imm8 vary) 
m 00 01 10 11

BEQI — page 273 BNEI — page 289 BLTI — page 283 BGEI — page 278

Table 7–236.  BI1 (from Table 7–233) Formats BRI8 and BRI12 (s, r, imm8 vary) 
m 00 01 10 11

ENTRYW — page 340 B1 — Table 7–237 BLTUI — page 285 BGEUI — page 280

Table 7–237.  B1 (from Table 7–236) Format BRI8 (s, imm8 vary) 
r xx00 xx01 xx10 xx11

00xx BFP — page 276 BTP — page 296 reserved reserved

01xx reserved reserved reserved reserved

10xx LOOP — page 392 LOOPNEZ — page 396 LOOPGTZ — page 394 reserved

11xx reserved reserved reserved reserved

Table 7–238.  B (from Table 7–192) Format RRI8 (t, s, imm8 vary) 
r xx00 xx01 xx10 xx11

00xx BNONE — page 292 BEQ — page 272 BLT — page 282 BLTU — page 284

01xx BALL — page 264 BBC — page 266 BBCI — page 267

10xx BANY — page 265 BNE — page 288 BGE — page 277 BGEU — page 279

11xx BNALL — page 287 BBS — page 269 BBSI — page 270
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7.3.2 CUST0 and CUST1 Opcode Encodings

CUST0 and CUST1 opcode encodings shown in Table 7–193 are permanently reserved 
for designer-defined opcodes. In the future, customers who use these spaces exclusive-
ly for their own designer-defined opcodes will be able to add new Tensilica-defined op-
tions without changing their opcodes or binary executables.

7.3.3 Cache-Option Opcode Encodings (Implementation-Specific)

The encodings for the r field sub-opcodes of the IMP family of opcodes, which are im-
plementation-specific Cache-Option opcodes, are shown in Table 7–207. The IMP fami-
ly of opcodes is reserved for these implementation-specific instructions. For a descrip-
tion of these instructions, see Chapter 6. 

Table 7–239.  ST2 (from Table 7–192) Formats RI7 and RI6 (s, r vary) 
t xx00 xx01 xx10 xx11

00xx MOVI.NN — page 422

01xx
10xx BEQZ.NN — page 275

11xx BNEZ.NN — page 291

Table 7–240.  ST3 (from Table 7–192) Format RRRN (t, s vary) 
r xx00 xx01 xx10 xx11

00xx MOV.NN — page 413 reserved reserved reserved

01xx reserved reserved reserved reserved

10xx reserved reserved reserved reserved

11xx reserved reserved reserved S3 — Table 7–241 (s=0)

Table 7–241.  S3 (from Table 7–240) Format RRRN (no fields vary) 
t xx00 xx01 xx10 xx11

00xx RET.NN — page 479 RETW.NWN — page 482 BREAK.NN — page 295 NOP.NN — page 460

01xx reserved reserved ILL.NN — page 359 reserved

10xx reserved reserved reserved reserved

11xx reserved reserved reserved reserved
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8. Using the Xtensa Architecture

This chapter describes Tensilica’s software tool support of the Xtensa ISA and the con-
ventions used by software.

8.1 The Windowed Register and CALL0 ABIs

The Xtensa ISA supports two different application binary interfaces (ABIs). The win-
dowed register ABI works with the Windowed Register Option and is the default ABI. 
The CALL0 ABI can be used with any Xtensa processor. It does not make use of register 
windows, so it typically has slightly worse performance and code size than the win-
dowed register ABI.

These two ABIs share much in common and diverge mostly in the areas of stack frame 
layout and general-purpose register usage. The basic data type sizes and alignments 
are identical, and the argument passing and return value conventions are nearly the 
same.

8.1.1 Windowed Register Usage and Stack Layout

Table 8–242 shows the general-purpose register usage for the windowed register ABI. 
Registers a0 and a1 are reserved for the return address and stack pointer, respectively. 
They must always contain those values, because they are used for stack unwinding in 
debuggers and exception handling. Incoming arguments are stored in registers a2 
through a7. The location of outgoing arguments depends on the window size.

The stack frame layout for the windowed register ABI is shown in Figure 8–53. The stack 
grows down, from high to low addresses. The stack pointer (SP) must be aligned to 16-
byte boundaries. A stack-frame pointer (FP) may (but is not required to) be allocated in 
register a7. For example, it may be needed when the routine contains a call to alloca. 
If a frame pointer is used, its value is equal to the original stack pointer (immediately af-
ter entry to the function), before any alloca space allocation.

Table 8–242.  Windowed Register Usage 
Register Use
a0 Return address
a1 (sp) Stack pointer
a2 – a7 Incoming arguments
a7 Callee’s stack-frame pointer (optional)
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The register-spill overflow area is equal to N–4 words, where N can be 4, 8, or 12 as de-
termined by the largest CALLN or CALLXN in the function. For details, see “Windowed 
Procedure-Call Protocol” on page 187.

The stack pointer SP should only be modified by ENTRY and MOVSP instructions. If some 
other instruction modifies SP, any values in the register-spill area will not be moved. An 
exception to this rule is when setting the initial stack pointer for a new stack, where the 
register-spill area is guaranteed to be empty and where MOVSP cannot safely be used.

Figure 8–53.  Stack Frame for the Windowed Register ABI
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8.1.2 CALL0 Register Usage and Stack Layout

Table 8–243 shows the general-purpose register usage for the CALL0 ABI. The stack 
pointer in register a1 and registers a12–a15 are callee-saved, but the rest of the regis-
ters are caller-saved. Register a0 holds the return address upon entry to a function, but 
unlike the windowed register ABI, it is not reserved for this purpose and may hold other 
values after the return address has been saved. Function arguments are passed in reg-
isters a2 through a7.

The stack frame layout for the CALL0 ABI is the same as for the windowed register ABI, 
except without the reserved register-spill areas. (Registers will need to be saved to the 
stack, but there is no convention for where in the frame to place that storage.) Like the 
windowed register ABI, the stack grows down and the stack pointer must be aligned to 
16-byte boundaries. The optional stack-frame pointer is also used in the same way, but 
it is placed in register a15 with the CALL0 ABI.

8.1.3 Data Types and Alignment

Table 8–244 shows the data-type sizes and their alignment. The maximum alignment for 
user-defined types is 16 bytes.

Table 8–243.  CALL0 Register Usage 
Register Use
a0 Return Address
a1 (sp) Stack Pointer (callee-saved)
a2 – a7 Function Arguments
a8 Static Chain (see Section 8.1.8)
a12 – a15 Callee-saved
a15 Stack-Frame Pointer (optional)

Table 8–244.  Data Types and Alignment 
Data Type Size and Alignment

char1 1 byte
short 2 bytes
int 4 bytes
long 4 bytes
long long 8 bytes
float 4 bytes

1. The char type is unsigned by default for Xtensa processors.
2. The xtbool types are only available if the Boolean registers are included in the processor configuration. See “Boolean Option” on page 65 for 

information about the Boolean registers.
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8.1.4 Argument Passing

Arguments are passed in both registers and memory. In general, the first six words of ar-
guments go in the AR register file, and any remaining arguments go on the stack. For a 
CALLN instruction (where N is 0 for the CALL0 ABI, or where N is 4, 8, or 12 for the win-
dowed register ABI) the caller places the first arguments in registers AR[N+2] through 
AR[N+7]. (Note that this implies that CALL12 can only be used when there are two 
words of arguments or less; only AR[N+2] and AR[N+3] can be used when N=12.) The 
callee receives these arguments in AR[2] through AR[7].

If there are more than six words of arguments, the additional arguments are stored on 
the stack beginning at the caller’s stack pointer and at increasingly positive offsets from 
the stack pointer. That is, the caller stores the seventh argument word (after the first six 
words in registers) at [sp + 0], the eighth word at [sp + 4], and so on. The callee can ac-
cess these arguments in memory beginning at [sp + FRAMESIZE], where FRAMESIZE 
is the size of the callee’s stack frame.

All arguments consist of an integral number of 4-byte words. Thus, the minimum argu-
ment size is one word. Integer values smaller than a word (that is, char and short) are 
stored in the least significant portion of the argument word, with the upper bits set to 
zero for unsigned values or sign-extended for signed values.

When a value larger than 4 bytes is passed in registers, the ordering of the words is the 
same as the byte ordering. With little endian ordering, the least significant word goes in 
the first register. With big endian ordering, the most significant word comes first.

double 8 bytes
long double 8 bytes
pointer 4 bytes
xtbool2 1 byte
xtbool22 1 byte
xtbool42 1 byte
xtbool82 1 byte
xtbool162 2 bytes
user-defined types user-defined

Table 8–244.  Data Types and Alignment (continued)
Data Type Size and Alignment

1. The char type is unsigned by default for Xtensa processors.
2. The xtbool types are only available if the Boolean registers are included in the processor configuration. See “Boolean Option” on page 65 for 

information about the Boolean registers.
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Each argument must be passed entirely in registers or entirely on the stack; an argu-
ment cannot be split with some words in registers and the remainder on the stack. If an 
argument does not fit entirely in the remaining unused registers, it is passed on the 
stack and those registers remain unused.

Arguments must be properly aligned. If the type of the argument requires 4-byte or less 
alignment, this requirement has no effect; all arguments have at least 4-byte alignment 
anyway. If an argument requires 8-byte alignment and is passed in registers, the first 
word must be in an even-numbered register. This sometimes requires leaving an odd-
numbered register unused. Similarly, if an argument requires 16-byte alignment and is 
passed in registers, the first word must be in the first argument register (AR[N+2]); oth-
erwise, it is passed on the stack. If an argument is passed in memory, the memory loca-
tion must have the alignment required by the argument type.

Structures and other aggregate types are passed by value. The preceding rules apply to 
structures in the same way as scalars. If a structure is small enough to be passed in reg-
isters, the words of the structure are placed in registers according to their order in mem-
ory. A variable-sized structure is always passed on the stack and any remaining argu-
ment registers go unused. If the size of a structure is not an integral number of words, 
padding is inserted at one end of the structure. For structures smaller than a word, the 
padding is always in the most-significant part of the word. A structure larger than a word 
is padded in the last bytes of the last argument word, so that the structure is contiguous 
when the registers are stored to consecutive words of memory.

Values of user-defined TIE types cannot be passed as arguments. (That is, they cannot 
be arguments of procedure calls; they may still be used as arguments of certain intrinsic 
functions and macros that do not correspond to real procedure calls.)

8.1.5 Return Values

Values of four words or less are returned in registers. The callee places the return value 
in registers beginning with AR[2] and continuing up to (and including) AR[5], depending 
on the size of the value. For a CALLN instruction (where N is 0 for the CALL0 ABI, or 
where N is 4, 8, or 12 for the windowed register ABI) the caller receives these values in 
registers AR[N+2] through AR[N+5]. (Note that, as with arguments, this limits the use of 
CALL12 instructions. A CALL12 instruction can only be used when the return value is 
two words or less; only AR[N+2] and AR[N+3] can be used when N=12.)

Return values smaller than a word are stored in the least-significant part of AR[2], with 
the upper bits set to zero for unsigned values or sign-extended for signed values.

Values larger than four words are returned by invisible reference. The caller passes a 
pointer as an invisible first argument and the callee stores the return value in the memo-
ry referenced by the pointer. The memory allocated by the caller must have the appropri-
ate size and alignment for the return value.
Xtensa Instruction Set Architecture (ISA) Reference Manual 591



Chapter 8. Using the Xtensa Architecture
Even though values of user-defined types cannot be passed as arguments, they are al-
lowed as return values. If a procedure returns such a value, it is stored in the first regis-
ter of the register file associated with that user-defined type.

8.1.6 Variable Arguments

Variable argument lists are handled in the same way as other arguments. There is no 
change to the calling convention for functions with variable argument lists.

8.1.7 Other Register Conventions

In addition to the general-purpose AR register file, Xtensa processors may contain a va-
riety of other register files, special registers, and TIE states (which may be mapped to 
user registers). The conventions for saving and restoring these registers across function 
calls vary. Some are caller-saved, which means that a function does not need to save 
those registers to the stack before modifying them, because it can assume that the call-
er has already saved them. For callee-saved registers, the responsibility is reversed and 
the callee function must save the original values of the registers that it modifies. Some 
other registers are global — any changes to their values persist across function calls — 
and for some others, the usage conventions are not specified.

Unless otherwise specified, the default convention is that all registers are caller-saved. 
The exceptions are:

When using the CALL0 ABI, several of the AR registers are callee-saved (see 
Table 8–243 on page 589).
No convention is specified for the use of TIE states — the programmer can decide 
how to use TIE states. If you are using TIE states together with cooperative (non-
preemptive) context switching, be careful that your use of TIE states matches the 
assumptions of the operating system. The operating system may assume that TIE 
states need not be saved when a context switch primitive is invoked; that is, it may 
assume that TIE states are caller-saved.
The following special registers and user registers are global: LITBASE, 
THREADPTR, and FCR. These registers are used for special purposes and typically 
keep the same values across function calls.

As a consequence of the LOOP special registers (LBEG, LEND, and LCOUNT) being call-
er-saved, the LOOP instructions should not be used for loops containing function calls. 
Doing so would require saving and restoring the LOOP registers around the call, which 
would overwhelm the advantage of the LOOP instructions.
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8.1.8 Nested Functions

Some languages (including C with a GCC extension) allow nested functions. A function 
A nested inside another function B must be able to access the local variables of both A 
and B. Implementing this requires that when B calls A, it must somehow pass to A infor-
mation to allow locating B’s stack frame. Some implementations of nested functions use 
a data structure known as a “display” for this purpose. GCC uses the simpler alternative 
of passing a “static chain” as an invisible argument to the nested function. The static 
chain is simply a pointer to the caller’s stack frame. This approach is preferable to using 
a display as long as functions are not deeply nested.

Because nested functions may be called indirectly through pointers, the caller may not 
be able to detect when it is calling a nested function. Therefore, the invisible static chain 
argument must be passed in a reserved location where it does not interfere with the oth-
er arguments. For the CALL0 ABI, the static chain is passed in register a8. For the win-
dowed register ABI, there are no registers available to hold the static chain, and the 
stack locations at positive offsets from SP are all used for passing normal arguments. 
The solution is to store the static chain on the stack at a negative offset from the caller’s 
stack pointer. The first four words below SP are reserved as a register save area, so the 
static chain is passed in the fifth word below SP. That is, the caller places the static chain 
in memory at [SP–20], and the callee reads it from [SP + FRAMESIZE – 20] where 
FRAMESIZE is the size of the callee’s stack frame.

When the address of a nested function is stored into a pointer, the compiler actually 
emits code to dynamically create a small piece of executable code known as a “trampo-
line”, and the pointer is set to reference the trampoline. When an indirect call is made 
through the pointer, the trampoline code sets the value of the static chain and then 
transfers control to the nested function. The trampoline code is allocated on the stack — 
this implies that it must be possible to execute code stored in the region of memory hold-
ing the stack. For example, when using nested functions that have their addresses 
taken, the stack cannot be located in a separate data memory.

This positioning of the static chain for the windowed register ABI has an implication for 
exception handlers. If an exception occurs after the static chain has been written but 
before the ENTRY instruction in the callee, the contents of memory from [SP–20] through 
[SP–1] must be preserved by the handler. Because of the register overflow save area, 
the contents of memory from [SP–16] to [SP–1] must be preserved regardless, so the 
presence of the static chain simply adds one more word of memory that must be pre-
served. 
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8.1.9 Stack Initialization

Creating and initializing a stack for a new thread requires:
reserving some memory,
setting up the initial stack frame,
setting the stack pointer to the initial frame, and
setting the initial return address (in register a0) to zero.

If the initial procedure executed by the thread does not store any data in the initial stack 
frame, and if all the call instructions in the initial procedure use the CALL0 ABI or a win-
dow size of four, then the initial stack frame can be empty and requires no setup. The 
default C runtime initialization code meets these conditions, so that the stack can be ini-
tialized simply by setting the stack pointer to the high end of the reserved memory.

If the thread begins with some other code that may execute a CALL8 or CALL12 instruc-
tion or that requires storage on the stack, the initial frame must be constructed before 
jumping to the initial procedure. The size of the initial frame is equal to the sum of the lo-
cal storage requirements and the extra save area. The stack pointer should be initialized 
to the high end of the reserved memory less the size of the initial frame. Furthermore, 
assuming the thread begins executing with only the current register window loaded, the 
base save area at (sp – 16) must be initialized as if it had been written by a window 
overflow. Specifically, the stack pointer value stored at (sp – 12) must be set to the high 
end of the reserved stack area plus 16 bytes. This allows subsequent window overflows 
to locate the extra save area in the initial stack frame.

The return address register (a0) for the first procedure on the stack must be explicitly 
set to zero. This is used to mark the top of the stack for use by stack unwinding code.

The following code is an example of how the stack may be initialized to allow CALL8 (but 
not CALL12) in the initial thread:

movi a0, 0
movi sp, stackbase + stacksize - 16
addi a4, sp, 32 // point 16 past extra save area
s32e a4, sp, -12 // access to extra save area
call8 firstfunction

The following code is an example of how the stack may be initialized to allow CALL12 
and “loc” bytes of locals and parameters in the initial thread (loc is a multiple of 16):

movi a0, 0
movi sp, stackbase + stacksize - loc - 32
addi a4, sp, loc + 48 // point 16 past extra save area
s32e a4, sp, -12 // access to extra save area
call12 firstfunction
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8.2 Other Conventions

This section describes the usage conventions other than the Xtensa application binary 
interface (ABI).

8.2.1 Break Instruction Operands

The break (24-bit) instruction has two immediate 4-bit operands, and the break.n 
(narrow, 16-bit) instruction has one immediate 4-bit operand. These operands (informal-
ly called “break codes” in this section) can be used to convey relevant information to the 
debug exception handler. Their exact meaning is a matter of convention. However, 
some of the tools and software (debuggers, OS ports, and so forth) used with Xtensa 
cores necessarily make use of the break instructions, so some conventions had to be 
established. The conventions that have been adopted are described in this section.

Half of the break codes are reserved for use by software provided by Tensilica and its 
partners, leaving the remaining half for “user-defined” purposes. Note that making use of 
user-defined break codes usually requires special OS or monitor support, or at least 
having control of the debug exception handler (or of the external OCD software when 
OCD mode is enabled). Break code allocations are described in Table 8–245.

Break codes have been allocated for a number of planted breakpoints (breakpoints that 
replace some arbitrary pre-existing instruction, usually under control of a debugger or 
related software, and usually temporarily) and coded breakpoints (breakpoints explicitly 
coded in the assembly source).

Planted breakpoints have a narrow (16-bit) and a wide (24-bit) version. Because 24-bit 
instructions exist in all Xtensa processors, instructions 24-bits or wider may be replaced 
with a 24-bit BREAK instruction. With the density option, the narrow version (BREAK.N) 
must generally be used when replacing an existing narrow instruction. Otherwise a wide 
break instruction would overwrite two sequential instructions, the second of which could 
be the (now corrupted) target of a branch. Note that without the density option, only the 
wide form of the break instruction can be used because the narrow version does not 
exist.

A number of coded breakpoints have been defined to provide a means of making vari-
ous exceptions (that is, illegal instructions, load/store errors, and so forth) visible to the 
debugger, which does not otherwise see these types of exceptions through the debug 
exception vector. These breakpoints necessarily require support from the OS (or RTOS). 
They are typically invoked by the OS for those exceptions and interrupts that neither the 
OS nor the application handles, thus providing an opportunity for a debugger (if one is 
active) to catch the condition. If the OS has its own mechanism for handling unregis-
tered exceptions and interrupts, the relevant coded breakpoint is normally invoked be-
fore this mechanism (there often is no well-defined “after”). Thus, it is very important that 
the debug exception handler treat the coded breakpoint as a no-op if no debugger is ac-
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tive, to let the OS follow its default course of action. By convention, any break 1,x in-
struction must be skipped and ignored if no debugger is active. If the debug exception 
handler (or OCD software if OCD mode is enabled) detects the presence of a debugger, 
it will transfer control to the debugger. Otherwise, it must immediately resume execution 
at the instruction following the break (which requires incrementing EPC[DEBUGLEVEL] 
by two for break.n or by three for break), in effect making the break a no-op.

Another essential requirement for break 1,0 through break 1,5 is that the OS in-
voke these coded breakpoints in exactly the same context (core state) as when the ex-
ception was entered (except, necessarily, for PC and EXCSAVEn). This allows the de-
bugger to know the exact state of the core at the time the exception (or interrupt) 
occurred, without requiring any OS dependency. For example, when detecting an un-
handled level-1 user exception, the OS has typically saved (in EXCSAVE1 and possibly 
memory) and modified only a few address registers; these registers must all be restored 
prior to executing the break 1,1 instruction. The debug exception handler can then ex-
amine all registers as they were when the user exception occurred, including examining 
EXCCAUSE to determine which exception occurred, and so forth. Similarly, following a 
break 1,2 it can resolve which interrupt occurred using EPS[DEBUGLEVEL].INTLEV-
EL.

Coded breakpoints can always use the wide (24-bit) form of the break instruction, so 
they were not allocated from the limited number of narrow break instructions.

Table 8–245.  Breakpoint Instruction Operand Conventions 
Breakpoint Instruction Type Description

break 0,0 planted

Breakpoints set by host debugger for debugging programs. 
These break instruction appear in code as a result of one of the 
following actions:

The debugger can request the monitor to write the breakpoint 
instruction into the code. 
The debugger can explicitly write this instruction into the code. 

break 0,1 planted

Breakpoints set by the monitor or OCD software for its own 
purposes. For example, xmon uses this breakpoint to detect and 
intercept UART interrupts. Ideally the presence of these breaks 
in the code is hidden from the debugger.

break 0,2 to 0,15 (undefined) Reserved (Tensilica)
break 1,0 coded Signals an unhandled level 1 kernel exception
break 1,1 coded Signals an unhandled level 1 user exception
break 1,2 coded Signals an unhandled high-priority interrupt

break 1,3 coded Signals an unhandled window overflow or underflow exception 
(unlikely to be invoked)

break 1,4 coded Signals an unhandled double exception
break 1,5 coded Signals an unhandled memory error exception
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8.2.2 System Calls

The details of system calls are inherently dependent on the operating system, but there 
are a few conventions that apply to all systems. The SYSCALL instruction has no imme-
diate operands, so the system call parameters are passed in registers. Each operating 
system is free to define its own register usage for system call parameters, with the ex-
ception that the system call request code must always be in register a2.

The system call request code 0 must be defined for all systems that use the windowed 
register ABI. (If the Xtensa processor configuration uses the CALL0 ABI, system call 0 
need not be implemented.) The purpose of system call 0 is to flush the register windows 
to the stack. It is often useful to have a portable and reasonably efficient means of flush-
ing register windows, such as when walking up the stack to find an exception handler. 
This system call provides an easy way to flush the register windows on all systems.

In general, each operating system can define its own conventions for which general-pur-
pose registers may be modified by a system call, including which registers will hold any 
return values or error codes. For system call 0 in particular, no return value is expected 
and each operating system must guarantee that no general-purpose registers other than 
a2 will be modified. The value in a2 upon return from system call 0 depends on the oper-
ating system.

break 1,6 to 1,13 coded Reserved (Tensilica)

break 1,14 coded
Issue a request through the debugger. Any use of this break 
instruction is debugger-specific. For example, certain versions of 
GDB use this to implement target initiated host I/O.

break 1,15 coded

Transfer control to debugger if present. This is typically inserted 
manually in the code for debugging purposes, or to signal critical 
events that should cause entry into the debugger if one is active, 
but be ignored otherwise.

break 2,x to 7,x (undefined) Reserved (Tensilica)
break 8,x to 15,x (undefined) User-defined

break.n 0 planted Same as break 0,0, but can also replace narrow (16-bit) 
instructions.

break.n 1 planted Same as break 0,1, but can also replace narrow (16-bit) 
instructions.

break.n 2 to 7 (undefined) Reserved (Tensilica)
break.n 8 to 15 (undefined) User-defined

Table 8–245.  Breakpoint Instruction Operand Conventions (continued)
Breakpoint Instruction Type Description
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8.3 Assembly Code

This section describes various things of interest to the assembly language writer, includ-
ing some examples.

8.3.1 Assembler Replacements and the Underscore Form

Machine code generated by the assembler may include opcode replacements for certain 
assembler opcodes. For example: 

The assembler can turn ADD into ADD.N, or ADDI into ADDI.N, and so forth when 
the density option is enabled.
The assembler substitutes a different instruction when an operand is out of range. 
For example, it turns MOVI into L32R when the immediate is outside the range 
-2048 to 2047.
By default, the assembler handles branches that won’t reach. For example, writing:

beq a1, a2, label

might actually generate:

bne a1, a2, .L1
j label

.L1:

if label is too far to reach with a simple beq instruction.

These transformations can be disabled by prefixing the instruction name with an under-
score (for example,_ADD) and with pseudo-ops. The assembler directives.begin and 
.end with no-transform can also be used to enable and disable these transforma-
tions. See the GNU Assembler User’s Guide for more detail.

8.3.2 Instruction Idioms

Table 8–246 specifies the preferred instruction idioms for common operations. These 
idioms are specified using only core instructions; in some cases substituting density 
instructions would be appropriate.
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Table 8–246.  Instruction Idioms 
Operation Preferred Idiom

AR[x] ← AR[y]
or ax, ay, ay
(generated by the MOV assembler macro)
(or if present, use 16-bit option MOV.N)

AR[x] ← not AR[y]
movi at, -1
xor ax, ay, at

AR[x] ← AR[y] and not AR[z]
and at, ay, az
xor ax, ay, at

AR[x] ← imm32 l32r ax, literalpooloffset

AR[x] ← AR[y] << AR[z]
ssl az
sll ax, ay

AR[x] ← AR[y] >>u AR[z]
ssr az
srl ax, ay

AR[x] ← AR[y] >>s AR[z]
ssr az
sra ax, ay

AR[x] ← rot(AR[y], AR[z])
ssa az
src ax, ay, ay

AR[x] ← byteswap(AR[y])

ssai 8
srli ax, ay, 16
src ax, ax, ay
src ax, ax, ax
src ax, ay, ax

if AR[x] ≤ AR[y] goto L bge ay, ax, L

if AR[x] > AR[y] goto L blt ay, ax, L

if AR[x] ≤ imm goto L blti ax, imm+1, L

if AR[x] > imm goto L bgei ax, imm+1, L

AR[x] ← AR[y] ≠ AR[z]
movi at, 1
xor ax, ay, az
movnezax, at, ax

AR[x] ← AR[y] = AR[z]

movi ax, 1
bne ay, az, L
movi ax, 0
L:

AR[x] ← AR[y] ≠ 0
movi at, 1
movi ax, 0
movnez ax, at, ay

AR[x] ← AR[y] = 0
movi at, 1
movi ax, 0
moveqz ax, at, ay
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8.3.3 Example: A FIR Filter with MAC16 Option

With the MAC16 Option, a portion of a real FIR filter might be:

input[next] = sample;// put sample into history array
acc = 0x4000; // for rounding
for (i = 0; i < n; i += 1) {

acc += input[i > next ? next-i+n : next-i] * coeff[i];
}
output[next] = acc >> 15;
next = next == N-1 ? 0 : next+1;

The read of the accumulator and shift is done as follows:

rsr a6, acclo // read 40-bit ACC
rsr a7, acchi // ...
ssai 15 // convert back to fractional 16
src a2, a7, a6 // bit form
clampsa2, a2, 15 // clamp to 16 bits

64-bit add
(x ← y + z)

add ax0, ay0, az0
add ax1, ay1, az1
bgeu ax0, az0, L1
addi ax1, ax1, 1
L1:

64-bit subtract
(x ← y − z)

sub ax0, ay0, az0
sub ax1, ay1, az1
bgeu ay0, az0, L
addi ax1, ax1, -1
L:

64-bit compare and branch
if x < y goto L

blt ax1, ay1, L
bne ax1, ay1, L1
bltu ax0, ay0, L
L1:

64-bit multiply
(x ← y × z)

mull ax0, ay0, az0
muluh ax1, ay0, az0
mull t, ay0, az1
add ax1, ax1, t
mull t, ay1, az0
add ax1, ax1, t

BR[x] ← BR[y] orb bx, by, by

BR[x] ← 0 xorb bx, b0, b0

BR[x] ← 1 orbc bx, b0, b0

Table 8–246.  Instruction Idioms (continued)
Operation Preferred Idiom
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To simplify the coding, change the preceding to store data in the input array backward 
so that the array references are all increments instead of decrements. Now convert it 
into two loops to avoid the circular addressing:

input[next] = in;
acc = 0x4000;
j = 0;
for (i = next; i < N; i += 1, j += 1) {

acc += input[i] * coeff[j];
}
for (i = 0; i < next; i += 1, j += 1) {

acc += input[i] * coeff[j];
}
next = next == 0 ? N-1 : next-1;

and then implement the loops with two calls to an assembler subroutine:

mac16_dot (N - next, &input[next], &coeff[0]);
mac16_dot (next, &input[0], &coeff[N - next]);

The MAC16 assembler for mac16_dot is:

// FIR Filter using MAC16

// Copyright 1999 Tensilica Inc.
// These coded instructions, statements, and computer programs are
// Confidential Proprietary Information of Tensilica Inc. and may not 
be
// disclosed to third parties or copied in any form, in whole or in 
part,
// without the prior written consent of Tensilica Inc.

// Exports
.global mac16_set_acc
.global mac16_acc
.global mac16_dot

// Use defines to make the code below less endian-specific
#if __XTENSA_EL__
#  define MULA00 mula.dd.ll
#  define MULA22 mula.dd.hh
#  define MULA02 mula.dd.lh
#  define MULA20 mula.dd.hl
#  define MULA00L mula.dd.ll.ldinc
#  define MULA22L mula.dd.hh.ldinc
#  define MULA02L mula.dd.lh.ldinc
#  define MULA20L mula.dd.hl.ldinc
#  define BBCI(_r,_b,_l) bbci _r, _b, _l
#  define BBSI(_r,_b,_l) bbsi _r, _b, _l
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#endif
#if __XTENSA_EB__
#  define MULA00 mula.dd.hh
#  define MULA22 mula.dd.ll
#  define MULA02 mula.dd.hl
#  define MULA20 mula.dd.lh
#  define MULA00L mula.dd.hh.ldinc
#  define MULA22L mula.dd.ll.ldinc
#  define MULA02L mula.dd.hl.ldinc
#  define MULA20L mula.dd.lh.ldinc
#  define BBCI(_r,_b,_l) bbci _r, 31-(_b), _l
#  define BBSI(_r,_b,_l) bbsi _r, 31-(_b), _l
#endif

#include <machine/specreg.h>

.text

// void mac16_set_acc(int hi, int lo)
.align4

mac16_set_acc:
entrysp, 16
wsr a2, ACCHI
wsr a3, ACCLO
retw

// int mac16_acc(int shift)
.align4

mac16_acc:
entrysp, 16
ssr a2
rsr a2, ACCHI
rsr a3, ACCLO
src a2, a2, a3
retw

// int mac16_dot (int n, int16* a, int16* b)
.align4

mac16_dot:
entrysp, 16
// a2: n
// a3: a[]
// a4: b[]
blti a2, 1, .sameret// if n <= 0, nothing to do
addi a3, a3, -4// compensate for pre-increment
addi a4, a4, -4// compensate for pre-increment
xor a5, a3, a4// check if vectors have same alignment
BBSI(a5, 1, .diffalign)
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.samealign:// vectors have same alignment
BBCI(a3, 1, .samewordalign)
ldincm0, a3 // a[0]
addi a3, a3, -2// undo overincrement, leave *a word-aligned
ldincm2, a4 // b[0]
addi a4, a4, -2// undo overincrement, leave *b word-aligned
MULA22m0, m2 // add product of misaligned first values
addi a2, a2, -1// finished one iteration

.samewordalign:// a[0] is word-aligned, b[0] is word-aligned
srli a5, a2, 2 // will do 4 MACs per inner loop iteration
beqz a5, .samemod4check// not even wind-up or wind-down
addi a5, a5, -1// (n/4)-1 inner loop iterations

// (1 iteration done in wind-up/wind-down)
// wind up
ldincm0, a3 // m0 = a[1]:a[0]
ldincm2, a4 // m2 = b[1]:b[0]
ldincm1, a3 // m1 = a[3]:a[2]
MULA00Lm3, a4, m0, m2// m3 = b[3]:b[2]; acc += a[0]*b[0]
loopneza5, .sameloopend

.sameloop:// for i = 4; i < N-3; i += 4
MULA22Lm0, a3, m0, m2// m0 = a[i+1]:a[i+0]; acc += a[i-4+1]:b[i-

4+1]
MULA00Lm2, a4, m1, m3// m2 = b[i+1]:b[i+0]; acc += a[i-4+2]:b[i-

4+2]
MULA22Lm1, a3, m1, m3// m1 = a[i+3]:a[i+2]; acc += a[i-4+3]:b[i-

4+3]
MULA00Lm3, a4, m0, m2// m3 = b[i+3]:b[i+2]; acc += a[i+0]*b[i+0]

.sameloopend:
// wind down
MULA22m0, m2 // acc += a[i+1]*b[i+1]
MULA00m1, m3 // acc += a[i+2]*b[i+2]
MULA22m1, m3 // acc += a[i+3]*b[i+3]

.samemod4check:
BBCI(a2, 1, .samemod2check)
// count is 2 mod 4
ldincm0, a3 // m0 = a[i+5]:a[i+4]
ldincm2, a4 // m2 = b[i+5]:b[i+5]
MULA00m0, m2 // acc += a[i+4]*b[i+4]
MULA22m0, m2 // acc += a[i+5]*b[i+5]

.samemod2check:
BBCI(a2, 0, .sameret)
// count is 1 mod 2
ldincm0, a3 // m0 = a[i+7]:a[i+6]
ldincm2, a4 // m2 = b[i+7]:b[i+6]
MULA00m0, m2 // acc += a[i+6]*b[i+6]

.sameret:
retw

.diffalign:// vectors have different alignment
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BBCI(a3, 1, .diffwordalign)
// a[0] is misaligned, b[0] is aligned
ldincm0, a3 // a[0]
addi a3, a3, -2// undo overincrement, leave *a word-aligned
ldincm2, a4 // b[0]
addi a4, a4, -2// undo overincrement, leave *b misaligned
MULA20m0, m2 // add product of first values
addi a2, a2, -1// finished one iteration

.diffwordalign: // a[0] is now aligned, b[0] is misaligned
srli a5, a2, 2 // will do 4 MACs per inner loop iteration
ldincm3, a4 // m3 = b[0]:b[-1]
beqz a5, .diffmod4check// not even wind-up or wind-down
addi a5, a5, -1// (n/4)-1 inner loop iterations

// (1 iteration done in wind-up/wind-down)
// wind up
ldincm0, a3 // m0 = a[1]:a[0]
ldincm2, a4 // m2 = b[2]:b[1]
MULA02Lm1, a3, m0, m3// m1 = a[3]:a[2]; acc += a[0] * b[0]
MULA20Lm3, a4, m0, m2// m3 = b[4]:b[3]; acc += a[1] * b[1]
loopneza5, .diffloopend

.diffloop:// for i = 4; i < N-3; i += 4
MULA02Lm0, a3, m1, m2// m0 = a[i+1]:a[i+0]; acc += a[i-4+2]*b[i-

4+2]
MULA20Lm2, a4, m1, m3// m2 = b[i+2]:b[i+1]; acc += a[i-4+3]*b[i-

4+3]
MULA02Lm1, a3, m0, m3// m1 = a[i+3]:a[i+2]; acc += a[i+0]*b[i+0]
MULA20Lm3, a4, m0, m2// m3 = b[i+4]:b[i+3]; acc += a[i+1]*b[i+1]

.diffloopend:
// wind down
MULA02m1, m2 // acc += a[i+2] * b[i+2]
MULA20m1, m3 // acc += a[i+3] * b[i+3]

.diffmod4check:
BBCI(a2, 1, .diffmod2check)
// count is 2 mod 4
ldincm0, a3 // m0 = a[i+5]:a[i+4]
MULA02m0, m3 // acc += a[i+4] * b[i+4]
ldincm3, a4 // m3 = b[i+6]:b[i+5]
MULA20m0, m3 // acc += a[i+5] * b[i+5]

.diffmod2check:
BBCI(a2, 0, .diffret)
// count is 1 mod 2
ldincm0, a3 // m0 = a[i+7]:a[i+6]
MULA02m0, m3 // acc += a[i+6] * b[i+6]

.diffret:
retw
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8.4 Performance

This book describes the Xtensa Instruction Set Architecture (ISA) but is not the refer-
ence for performance. The ISA is defined independently of its various implementations, 
so that software that targets the ISA will run on any its implementations. The ISA in-
cludes features that are not required by some of its implementations, but which will be 
important to include in software written today if it is to work on future implementations 
(for example, using MEMW, EXTW, and EXCW). While correct software must adhere to the 
ISA and not to the specifics of any of its implementations, it is sometimes important to 
know the details of an implementation for performance reasons, such as scheduling in-
structions to avoid pipeline delays. This chapter provides an overview of performance 
modeling.

8.4.1 Processor Performance Terminology and Modeling

It is important to have a model of processor performance for both code generation and 
simulation. However, the interactions of multiple instructions in a processor pipeline can 
be complex. It is common to simplify and describe pipeline and cache performance sep-
arately even though they may interact, because the information is used in different stag-
es of compilation or coding. We adopt this approach, and then separately describe some 
of the interactions. It is also common to describe the pipelining of instructions with laten-
cy (the time an instruction takes to produce its result after it receives its inputs) and 
throughput (the time an instruction delays other instructions independent of operand de-
pendencies) numbers, but this cannot accommodate some situations. Therefore, we 
adopt a slightly more complicated, but more accurate model. This model focuses on pre-
dicting when one instruction issues relative to other instructions. An instruction issues 
when all of its data inputs are available and all the necessary hardware functional units 
are available for it. Issue is the point at which computation of the instruction’s results 
begins.

Instead of using a per-instruction latency number, instructions are modeled as taking 
their operands in various pipeline stage numbers, and producing results in various pipe-
line stage numbers. When instruction IA writes (or defines) X (either an explicit operand 
or implicit state register) and instruction IB reads (or uses) X, then instruction IB de-
pends on IA.1 If instruction IA defines X in stage SA (at the end of the stage), and in-
struction IB uses X in stage SB (at the beginning of the stage), then instruction IB can is-
sue no earlier than D = max(SA − SB + 1, 0) cycles after IA issued. This is illustrated in 
Figure 8–54. If the processor reaches IB earlier than D cycles after IA, it generally de-
lays IB’s issue into the pipeline until D cycles have elapsed. When the processor delays 
an instruction because of a pipeline interaction, it is called an “interlock.” For a few spe-
cial dependencies (primarily those involving the special registers controlling exceptions, 

1. This situation is called a “read after write” dependency. Other possible operand dependencies familiar to coders are “write after write” and “write after 
read.”
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interrupts, and memory management) the processor does not interlock. These situations 
are called “hazards.” For correct operation, code generation must insert xSYNC instruc-
tions to avoid hazards by delaying the dependent instruction. The xSYNC series of in-
structions is designed to accomplish this delay in an implementation-independent man-
ner.

When an instruction is described as making one of its values available at the end of 
some stage, this refers to when the computation is complete, and not necessarily the 
time that the actual processor state is written. It is usual to delay the state write until at 
least the point at which the instruction is committed (that is, cannot be aborted by its 
own or an earlier instruction’s exception). In some implementations the state write is de-
layed still further to satisfy resource constraints. However, the delay in writing the actual 
processor state is usually invisible; most processors will detect the use of an operand 
that has been produced by one instruction and is being used by another even though the 
processor state has not been written, and forward the required value from one pipeline 
stage to the other. This operation is called bypass.

Instructions may be delayed in a pipeline for reasons other than operand dependencies. 
The most common situation is for two or more instructions to require a particular piece of 
the processor’s hardware (called a “functional unit”) to execute. If there are fewer copies 
of the unit than instructions that need to use the unit in a given cycle, the processor must 
delay some of the instructions to prevent the instructions from interfering with each oth-
er. For example, a processor may have only one read port for its data cache. If instruc-
tion IC uses this read port in its stage 4 and instruction ID uses the read port in its stage 
3, then it would not be possible to issue IC in cycle 10 and ID in cycle 11, because they 
would both need to use the data cache read port in cycle 14. Typically, the processor 
would delay ID’s issue into the pipeline by one cycle to avoid conflict with IC.

Modern processor pipeline design tends to avoid the use of functional units in varying 
pipeline stages by different instructions and to fully pipeline functional unit logic. This 
means that most instructions would conflict with each other on a shared functional unit 
only if they issued in the same cycle. However, there are usually still a small number of 
cases in which a functional unit is used for several cycles. For example, floating-point or 
integer division may iterate for several cycles in a single piece of hardware. In this case, 
once a divide has started, it is not possible to start another divide until the first has left 
the iterative hardware. This is illustrated in Figure 8–55.
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Figure 8–54.  Instruction Operand Dependency Interlock

Figure 8–55.  Functional Unit Interlock

Cycle T+0 T+1 T+2 T+3 T+4 T+5 T+6

IA A0 A1 A2 A3

IB attempted B0 B1 B2 B3

IB attempted B0 B1 B2 B3

IB issued B0 B1 B2 B3

value for X defined (3)

value for X needed (1) but not available
value for X needed (1) bypassed from IA

bypass of X from IA to IB

IA issues in cycle T+0, IB issues in cycle T+0+max(3−1+1,0) = T+3

Cycle T+0 T+1 T+2 T+3 T+4 T+5 T+6

IA A0 A1 A2 A3

IB attempted B0 B1 B2 B3

IB issued B0 B1 B2 B3

Two cycle use of a functional unit

Functional unit needed for 3 cycles but not available
Functional unit available after instruction is delayed

IB tries to issue at T+1 and reserve the unit in T+2..T+4, but is blocked by IA’s T+2 reservation
IB is retried and issues in cycle T+2, thereby avoiding IA’s reservations

IA issues at T+0 and reserves the functional unit in cycles T+1 and T+2
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8.4.2 Xtensa Processor Family

Many implementations of the Xtensa processor use a 5-stage pipeline capable of exe-
cuting at most one instruction per cycle. The pipeline stages are described in 
Table 8–247. The first stage, I, is partially decoupled from the next, R, and R is partially 
decoupled from the last three stages, E, M, and W, which operate in lock-step. If an inter-
lock condition is detected in the R stage, then in the next cycle the instruction is retried in 
R and a no-op is sent on to the E stage. If an instruction is held in R, then the word 
fetched in I is captured in a buffer.

The three primary implications of the Xtensa pipeline are shown in Figure 8–56.
Instructions that depend on an ALU result can execute with no delay because their 
result is available at the end of E and is needed at the beginning of E by the depen-
dent instruction.
Instructions that depend on load instruction results must issue two cycles after the 
load because the load result is available at the end of its M stage and is needed at 
the beginning of E by the dependent instruction. For best performance, code gener-
ation should put an independent instruction in between the load and any instruction 
that uses the load result.
Finally, the branch decision occurs in E, and for taken branches must affect the I 
stage of the target fetch, and so there are two fetched fall-through instructions that 
are killed on taken branches.

Table 8–247.  Xtensa Pipeline 
Name Description

I

Instruction cache/RAM/ROM access
Instruction cache tag comparison
Instruction alignment

R
AR register file read
Instruction decode, interlocking, and bypass
Instruction cache miss recognition

E

Execution of most ALU-type instructions (ADD, SUB, etc.)
Virtual address generation for load and store instructions
Branch decision and address selection

M

Data cache/RAM/ROM access for load and store instructions
Data cache tag comparison
Data cache miss recognition
Load data alignment

W State writes (e.g. AR register file write)
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The base processor uses 32-bit aligned fetches from the instruction cache/RAM/ROM. 
Processors with instructions larger than 32 bits in size use fetches big enough to fetch at 
least one instruction per cycle. If the target of a branch is an instruction that crosses a 
fetch boundary, then two fetches will be required before the entire instruction is avail-
able, and so the target instruction will begin three cycles after the branch instead of two. 
For best performance, code generation should align 24-bit targets of frequently taken 
branches on 0 or 1 mod 4 byte boundaries, and 16-bit targets on 0, 1, or 2 mod 4 byte 
boundaries.

The processor avoids overflowing its write buffer by interlocking in the R stage on stores 
when the write buffer is full or might become full from stores in the E and M stages.

Figure 8–56.  Xtensa Pipeline Effects

Refer to a specific Xtensa processor data book for detailed descriptions of processor 
performance and tables of pipeline stages where operands are used and defined.

Cycle T+0 T+1 T+2 T+3 T+4 T+5 T+6 T+7

From0 (ALU) I R E M W

From1 (Load) I R E M W

From2 I R E M W

From3 (Branch) I R E M W

From4 (killed by taken branch) I R E M

From5 (killed by taken branch) I R E

To0 I R

Load to use

Taken branch delay

ALU to use
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A. Differences Between Old and Current Hardware

A.1 Added Instructions

Instructions have been added to the instruction set at various points. Most have been 
added as a part of new options, but a few have been added to existing options. Table 9-
248 shows instructions added to existing options along with the first implementation in 
which they were added.

A.2 Xtensa Exception Architecture 1

As is described in Section 4.4.1, there are two variants of the Exception Option. Xtensa 
Exception Architecture 1 (XEA1) is no longer available for new hardware and this sec-
tion describes the differences between it and Xtensa Exception Architecture 2 (XEA2), 
which is described in the option chapter in Section 4.4.1.

The biggest difference between the two is that where XEA2 has a bit, PS.EXCM, that 
causes certain effects in the hardware that are useful on entering and leaving excep-
tions and interrupts, XEA1 has that functionality bundled into the setting of the 
PS.INTLEVEL field. There is no provision for either ring protection or double exceptions 
in XEA1.

The following subsections describe the differences in more detail.

Table 9-248.  Instructions Added 
Instruction First Implementation Containing the Instruction
DIWB T1050
DIWBI T1050
EXTW RA-2004.1
NOP (actual instruction rather than assembly macro) RA-2004.1
RER RC-2009.0
WER RC-2009.0
XSR T1040
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A.2.1 Differences in the PS Register

The following fields of the PS register (see page 87) are different in XEA1:
There is no PS.EXCM field in XEA1
There is no PS.RING field in XEA1
PS.INTLEVEL always exists in XEA1 (added by the Exception Option) instead of 
appearing with the Interrupt Option. In this case CINTLEVEL is 0 for normal opera-
tion and 1 when executing in an exception handler.

Some of the functions surrounding the fields of the PS register are also different from 
later behavior (see Section 4.4.1.3). In XEA1:

CEXCM ← PS.INTLEVEL ≠ 0

CRING ← 0

CINTLEVEL ← PS.INTLEVEL

CWOE ← PS.WOE

CLOOPENABLE ← 1

In XEA1, there is no architectural provision to take an instruction related exception when 
CINTLEVEL is greater than zero, but in actual hardware delivered it was possible to do 
under carefully controlled situations.

In XEA1, the PS register is reset to the value 028||14, which is different from what is giv-
en in Section 3.6 for XEA2.

A.2.2 Exception Semantics

Instead of the semantics shown in Section 4.4.1.10, exceptions have the following se-
mantics in Xtensa Exception Architecture 1 (XEA1):

procedure Exception(cause)
EPC[1] ← PC
PS.INTLEVEL ← 1
n ← if WindowStartWindowBase+1 then 2’b01

else if WindowStartWindowBase+2 then 2’b10
else if WindowStartWindowBase+3 then 2’b11
else 2’b00

if PS.UM then
EXCCAUSE ← cause
nextPC ← UserExceptionVector
PS.UM ← 0
PS.WOE ← 0

elseif n ≠ 2’b00 then
PS.OWB ← WindowBase
PS.WOE ← 0
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m ← WindowBase + (2'b00||n)
nextPC ← if WindowStartm+1 then WindowOverflow4

else if WindowStartm+2 then WindowOverflow8
else WindowOverflow12

WindowBase ← m
else

EXCCAUSE ← cause
nextPC ← KernelExceptionVector
-- note PS.WOE left unchanged
-- note PS.UM is already 0

endif 
endprocedure Exception

The intent of the window checks in Xtensa Exception Architecture 1 is to allow the kernel 
exception handler to use CALLX12 without taking an exception. This allows the handler 
to “save” 12 registers using the windowed-register mechanism instead of using 12 loads 
and 12 stores. This results in low-overhead kernel exceptions. When the window over-
flow exception is invoked instead of the requested exception, the RFWO from the handler 
will attempt to re-execute the instruction that caused the original exception, and this time 
the kernel exception handler will be invoked. This feature has proved difficult to use in 
operating systems.

User vector mode exceptions work differently because it is usually necessary to switch 
stacks when going from the program stack to the exception stack, and this involves stor-
ing all windows to the program stack. 

Instead of the semantics shown in Section 4.7.1.3, window checks have the following 
semantics in Xtensa Exception Architecture 1 (XEA1):

procedure WindowCheck (wr, ws, wt)
n ← if (wr ≠ 2'b00 or ws ≠ 2'b00 or wt ≠ 2'b00)

and WindowStartWindowBase+1 then 2’b01
else if (wr1 or ws1 or wt1)

and WindowStartWindowBase+2 then 2’b10
else if (wr = 2'b11 or ws = 2'b11 or wt = 2'b11)

and WindowStartWindowBase+3 then 2’b11
else 2’b00

if CWOE = 1 and n ≠ 2’b00 then
PS.OWB ← WindowBase
m ← WindowBase + (2'b00||n)
PS.WOE ← 0
PS.INTLEVEL ← 1
EPC[1] ← PC
nextPC ← if WindowStartm+1 then WindowOverflow4

else if WindowStartm+2 then WindowOverflow8
else WindowOverflow12

WindowBase ← m
endif

endprocedure WindowCheck
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A.2.3 Checking ICOUNT

The procedure for taking an ICOUNT interrupt is different from the one given in 
Section 4.7.6.8. Instead of setting PS.EXCM, it clears PS.WOE and PS.UM as shown 
here:

procedure checkIcount ()
if CINTLEVEL < ICOUNTLEVEL then

if ICOUNT ≠ -1 then
ICOUNT ← ICOUNT + 1

elseif CINTLEVEL < DEBUGLEVEL then
EPC[DEBUGLEVEL] ← PC
EPS[DEBUGLEVEL] ← PS
DEBUGCAUSE ← 1
PC ← InterruptVector[DEBUGLEVEL]
PS.WOE ← 0
PS.UM ← 0
PS.INTLEVEL ← DEBUGLEVEL

endif
endif

endprocedure checkIcount

A.2.4 The BREAK and BREAK.N Instructions

In XEA1 the BREAK and BREAK.N instructions do not affect PS.EXCM, since it does not 
exist, but set PS.UM ← 0 and PS.WOE ← 0 instead.

A.2.5 The RETW and RETW.N Instructions

In XEA1 the RETW and RETW.N instructions are not affected by and do not affect PS.EX-
CM, since it does not exist. In the underflow case, before setting  
EPC[1] ← PC, these instructions set PS.WOE ← 0 and PS.INTLEVEL ← 1 instead.

A.2.6 The RFDE Instruction

There is no RFDE instruction in XEA1.

A.2.7 The RFE Instruction

In XEA1 the RFE instruction does not affect PS.EXCM, since it does not exist, but sets 
PS.INTLEVEL ← 0 instead. In XEA1, it is used only to return from exceptions that went 
to the kernel exception vector.
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A.2.8 The RFUE Instruction

XEA1 supports the RFUE instruction, which is nearly identical to the RFE instruction but 
sets PS.UM ← 1 and PS.WOE ← 1 in addition. A partial description is given in 
Chapter 6, page 243. The following instruction entry shows the RFUE instruction that is 
not fully described in Chapter 6. Note that an ESYNC instruction needs to be used be-
tween a WSR/XSR.EPC1 and an RFUE instruction.

Instruction Word

Required Configuration Option:

Exception Option (Xtensa Exception Architecture 1 Only)

Assembler Syntax

RFUE

Description

RFUE exists only in Xtensa Exception Architecture 1. It is an illegal instruction in Xtensa 
Exception Architecture 2 and above.

RFUE returns from an exception that went to the UserExceptionVector (that is, a 
non-window synchronous exception or level-1 interrupt that occurred while the proces-
sor was executing with PS.UM set). It sets PS.UM back to 1, clears PS.INTLEVEL back 
to 0, sets PS.WOE back to 1, and then jumps to the address in EPC[1].

RFUE is a privileged instruction.

Operation

if CRING ≠ 0 then
Exception (PrivilegedInstructionCause)

else
PS.UM ← 1
PS.INTLEVEL ← 0
PS.WOE ← 1
nextPC ← EPC[1]

endif

23 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

24
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Exceptions

EveryInst Group (see page 244)
GenExcep(IllegalInstructionCause) if Exception Option

A.2.9 The RFWO and RFWU Instructions

In XEA1 the RFWO and RFWU instructions do not affect PS.EXCM, since it does not exist, 
but set PS.INTLEVEL ← 0 and PS.WOE ← 1 instead.

A.2.10 Exception Virtual Address Register

The exception virtual address register, EXCVADDR, does not exist in XEA1. There are no 
memory management tables to refill and so it is not absolutely necessary. On other 
memory exceptions, system software must decode the instruction to determine the 
memory address involved if it wishes to know.

A.2.11 Double Exceptions

There is never a DEPC register in XEA1. Double exceptions are not generally recover-
able in XEA1 and often not detectable.

A.2.12 Use of the RSIL Instruction

The RSIL instruction is typically used for executing a region of code at a new level:

RSIL a2, newlevel
code to be executed at newlevel
WSR a2, PS

In XEA2, the atomicity of the RSIL instruction is a convenience, but in XEA1 it is 
required to avoid race conditions that have to do with the fact that returning from 
exceptions sets PS.INTLEVEL to zero. 

A.2.13 Writeback Cache

No writeback data cache is available in XEA1.
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A.2.14 The Cache Attribute Register

In XEA1, the Options for Memory Protection and Translation in Section 4.6 and the cor-
responding TLB management instructions are not available. Instead, functionality similar 
to the Region Protection Option described in Section 4.6.3 is available through the 
cache attribute register. Table 9-249 shows the cache attribute register and its addition 
as a Special Register. 

The following table shows the Cache Attribute Special Register as it is implemented in 
XEA1 and described as current Special Registers are described in Chapter 5.

The single register controls protection for all of memory and for both instruction and data 
fetches. As shown in Figure 9-57, the register consists of eight 4-bit attribute fields. For 
any memory access, one of the attrn (attribute) fields is chosen for both instruction 
and data accesses by the following algorithm:

b ← vAddr31..29
cacheattr ← CACHEATTR(b||2'b11)..(b||2'b00)

Table 9-249.  Cache Attribute Register 

Register 
Mnemonic Quantity Width 

(bits) Register Name R/W
Special 
Register 
Number1

CACHEATTR 1 32 Cache attribute R/W 98
1. Registers with a Special Register assignment are read and/or written with the RSR, WSR, and XSR instructions. See Table 5–127 on 

page 205.

Table 9-250.  Cache Attribute Special Register 
SR# Name Description Reset Value
98 CACHEATTR Cache Attribute Register 32’h22222222

Option Count Bits Privileged? XSR Legal?
Exception Option Architecture 1 1 32 Yes

WSR Function RSR Function
CACHEATTR ← AR[t] AR[t] ← CACHEATTR

Other Changes to the Register Other Effects of the Register
Any instruction/data address translation

Instruction ⇒ xSYNC ⇒ Instruction
WSR/XSR CACHEATTR ⇒ ESYNC ⇒ RSR/XSR CACHEATTR
WSR/XSR CACHEATTR ⇒ ISYNC ⇒ Any Instruction address translation that depends on new value
WSR/XSR CACHEATTR ⇒ DSYNC ⇒ Any data address translation that depends on the change
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This allows the cache attributes to be separately specified for each 512MB of address 
space, just as with the attributes in the Region Protection Option described in 
Section 4.6.3. And as with that option, no translation of addresses is done.

Figure  9-57.  CACHEATTR Register

The resulting attribute is interpreted for both cache and local memory accesses as de-
scribed in Section 4.6.3.3, except that writeback caches are not available. It is in this 
sense that the Region Protection Option is upward compatible with XEA1.

After changing the attribute of a region by WSR to CACHEATTR, the operation of instruc-
tion fetch from that region is undefined until an ISYNC instruction is executed. Thus soft-
ware should not change the cache attribute of the region containing the current PC.

After changing the attribute of a region by WSR to CACHEATTR, the operation of loads 
from and stores to that region are undefined until a DSYNC instruction is executed.

The processor sets every region of CACHEATTR to bypass (4'b0010) on processor 
reset.

The following pseudocode describes the accessing of the CACHEATTR register.

function fcadecode (ca)-- cacheattr decode for fetch
if not (ca = 4'd1 or ca = 4'd2 or ca = 4'd3 or ca = 4'd4) then

fcadecode ← undefined8||1
else

usehit ← ca = 4'd1 or ca = 4'd3 or ca = 4'd4
allocate ← ca = 4'd1 or ca = 4'd3 or ca = 4'd4
writethru ← undefined
isolate ← undefined
guard ← 0
coherent ← 0
prefetch ← 0
streaming ← 0
fcadecode ← streaming||prefetch||coherent||guard 

||isolate||writethru||allocate||usehit||0
endif

endfunction fcadecode

function lcadecode (ca)-- cacheattr decode for load
if ca > 4'd4 and ca ≠ 4'd14 then

lcadecode ← undefined8||1

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

attr7 attr6 attr5 attr4 attr3 attr2 attr1 attr0

4 4 4 4 4 4 4 4
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else
usehit ← ca ≠ 4'd2
allocate ← ca = 4'd1 or ca = 4'd3 or ca = 4'd4
writethru ← undefined
isolate ← ca = 4'd14
guard ← 0
coherent ← 0
prefetch ← 0
streaming ← 0
lcadecode ← streaming||prefetch||coherent||guard 

||isolate||writethru||allocate||usehit||0
endif

endfunction lcadecode

function scadecode (ca)-- cacheattr decode for store
if ca > 4'd4 and ca ≠ 4'd14 then

scadecode ← undefined8||1
else

usehit ← undefined
allocate ← ca = 4'd3 or ca = 4'd4
writethru ← ca < 4'd4
isolate ← ca = 4'd14
guard ← 0
coherent ← 0
prefetch ← 0
streaming ← 0
scadecode ← streaming||prefetch||coherent||guard 

||isolate||writethru||allocate||usehit||0
endif

endfunction scadecode

A.3 New Exception Cause Values

Beginning with the RB-2006.0 release, the EXCCAUSE register, as indicated in 
Table 4–64 on page 89, can, in limited cases have different values than it did before 
that. In particular, exceptions which used to result in EXCCAUSE code 2 (Instruction-
FetchErrorCause) are now split into three values. EXCCAUSE code 2 (Instruction-
FetchErrorCause) now covers only those errors occuring inside the Xtensa processor. 
EXCCAUSE code 12 (InstrPIFDataErrorCause) now covers data errors on the PIF for 
Instruction fetch and EXCCAUSE code 14 (InstrPIFAddrErrorCause) now covers ad-
dress errors on the PIF for Instruction fetch. Similarly, exceptions which used to result in 
EXCCAUSE code 3 (LoadStoreErrorCause) are now split into three values. EXCCAUSE 
code 3 (LoadStoreErrorCause) now covers only those errors occuring inside the Xtensa 
processor. EXCCAUSE code 13 (LoadStorePIFDataErrorCause) now covers data errors 
on the PIF for Load/Store and EXCCAUSE code 15 (LoadStorePIFAddrErrorCause) now 
covers address errors on the PIF for Load/Store.
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This change was made to make it easier to separate errors caused by the system from 
errors caused by the Xtensa processor itself during debugging. If exception code is up-
graded so that exceptions with EXCCAUSE set to values 12-15 are routed to the code 
that handled EXCCAUSE 2 and 3 as appropriate, then the previous functionality is re-
tained.

A.4 ICOUNTLEVEL

The ICOUNTLEVEL Special Register is undefined after reset instead of 4’hF, beginning 
with the RA-2004.1 release. This change should not cause any difficulty as the behavior 
is the same after reset since PS.INTLEVEL is 4’hF.

A.5 MMU Option Memory Attributes

As described in Section 4.6.5.10, T1050 used different MMU Option Memory Attributes. 
System software may use the subset of attributes (1, 3, 5, 7, 12, 13, and 14) that have 
not changed to support all Xtensa processors.

The specific differences for T1050 were: 
In Table 4–109 on page 178, rows with Attribute 0, 2, 4, 6, 8, and 10 were equivalent 
to the row with Attribute 12 in the table.
In Table 4–109 on page 178, the row with Attribute 15 was equivalent to the row with 
Attribute 7, for the Data MMU but to the row with Attribute 12 for the Instruction 
MMU.
In Table 4–109 on page 178 for Data Loads when writeback caches are not present, 
rows with Attributes 9 and 11 were called “No Allocate” instead of “Cached” and the 
column labeled “Fill Load”) contained “no” for instead of “yes”.

A.6 Special Register Read and Write

Before the RA-2004.1 release, Special Registers were read and written with the RSR, 
WSR, and XSR instructions. Each of these instructions takes one operand to indicate the 
Special Register that was the source or destination of the instruction, and another oper-
and to indicate the AR register used as the other operand.

Beginning with the RA-2004.1 release, this trio of instructions was replaced with an indi-
vidual trio of instructions for each Special Register. For example, the new instructions for 
accessing the LBEG register are called RSR.LBEG, WSR.LBEG, and XSR.LBEG. The new 
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instructions take only one operand, which is the AR register. The old version of the in-
structions continues to be supported as an assembler macro that translates to the new 
ones.

The old trio of instructions was legal whether or not the Special Register accessed was 
defined in the particular implementation and, therefore, never produced an illegal in-
struction exception. Each of the new, much larger set of instructions is associated with a 
particular Special Register, and therefore is legal only if the associated register is de-
fined. Each of the trio of instructions for an undefined register raises an illegal instruction 
exception when execution is attempted.

Rather than list several hundred individual instructions, Chapter 6 lists the instructions 
as RSR.*, WSR.*, and XSR.* and references the list of Special Registers in Chapter 5.

A.7 MMU Modification

In the RC.2009.0 release and after, the IVARWAY56 and DVARWAY56 parameters in 
Table 4–105 on page 159 must both be "Variable" whereas before that they must both 
be "Fixed". The functional operation of the MMU with the parameters set to Fixed may 
be emulated when the parameters are set to Variable. In other words, the function of the 
earlier MMU can be emulated by the later one.

A.8 Reduction of SYNC Instruction Requirements

For the T1050 release and releases before it, there were additional SYNC instruction re-
quirements not listed in Section 5.3 on page 208. These additional SYNC instruction re-
quirements are listed in Table 9–251, by subsection and in the same format used in 
Section 5.3. If these SYNC instructions are inserted in later releases where they are not 
needed, the code will still function correctly.

Table 9–251.  T1050 Additional SYNC Requirements
Instruction ⇒ xSYNC ⇒ Instruction

Section 5.3.2 on page 212
WSR/XSR LBEG ⇒ ESYNC ⇒ RSR/XSR LBEG
WSR/XSR LEND ⇒ ESYNC ⇒ RSR/XSR LEND

Section 5.3.3 on page 213
WSR/XSR ACCLO ⇒ ESYNC ⇒ RSR/XSR ACCLO

WSR/XSR ACCHI ⇒ ESYNC ⇒ RSR/XSR ACCHI

WSR/XSR M0..3 ⇒ ESYNC ⇒ RSR/XSR M0..3
WSR/XSR M0..3 ⇒ ESYNC ⇒ MAC16 Option instructions
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Section 5.3.4 on page 215
WSR/XSR SAR ⇒ ESYNC ⇒ RSR/XSR SAR

WSR/XSR SAR ⇒ ESYNC ⇒ SLL/SRL/SRA/SRC
WSR/XSR BR ⇒ ESYNC ⇒ RSR/XSR BR

WSR/XSR BR ⇒ ESYNC ⇒ Listed instruction use of BR
Instruction setting of BR ⇒ ESYNC ⇒ RSR/XSR BR
WSR/XSR LITBASE ⇒ ESYNC ⇒ RSR/XSR LITBASE

WSR/XSR SCOMPARE1 ⇒ ESYNC ⇒ RSR/XSR SCOMPARE1

Section 5.3.5 on page 216
WSR/XSR PS ⇒ ESYNC ⇒ RSR/XSR PS

WSR/XSR PS ⇒ RSYNC ⇒ CALL4/8/12, CALLX4/8/12
WSR/XSR PS ⇒ RSYNC ⇒ RFI/RFDD/RFDO/RFE/RFWO/RFWU/RSIL/WAITI

WSR/XSR PS.INTLEVEL ⇒ RSYNC ⇒ RSIL

WSR/XSR PS.UM ⇒ ESYNC ⇒ RSIL
WSR/XSR PS.RING ⇒ RSYNC ⇒ Privileged instruction exception
WSR/XSR PS.OWB ⇒ RSYNC ⇒ RFWO/RFWU

WSR/XSR PS.OWB ⇒ RSYNC ⇒ RSIL
WSR/XSR PS.CALLINC ⇒ RSYNC ⇒ ENTRY/RSIL

WSR/XSR PS.WOE ⇒ RSYNC ⇒ RSIL

Section 5.3.6 on page 221
WSR/XSR WINDOWBASE ⇒ ESYNC ⇒ RSR/XSR WINDOWBASE

WSR/XSR WINDOWSTART ⇒ ESYNC ⇒ RSR/XSR WINDOWSTART

Section 5.3.7 on page 221
WSR/XSR PTEVADDR ⇒ ESYNC ⇒ RSR/XSR PTEVADDR
WSR/XSR EXCVADDR ⇒ ESYNC ⇒ RSR/XSR PTEVADDR

WSR/XSR RASID ⇒ ESYNC ⇒ RSR/XSR RASID

WSR/XSR ITLBCFG ⇒ ESYNC ⇒ RSR/XSR ITLBCFG
WSR/XSR DTLBCFG ⇒ ESYNC ⇒ RSR/XSR DTLBCFG

Section 5.3.8 on page 223
WSR/XSR EXCCAUSE ⇒ ESYNC ⇒ RSR/XSR EXCCAUSE

WSR/XSR EXCVADDR ⇒ ESYNC ⇒ RSR/XSR EXCVADDR

WSR/XSR EXCVADDR ⇒ ESYNC ⇒ RSR/XSR PTEVADDR

Table 9–251.  T1050 Additional SYNC Requirements
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Section 5.3.9 on page 226
WSR/XSR EPC1 ⇒ ESYNC ⇒ RSR/XSR EPC1

WSR/XSR EPC1 ⇒ ESYNC ⇒ RFE/RFWO/RFWU
WSR/XSR EPC2..7 ⇒ ESYNC ⇒ RSR/XSR EPC2..7

WSR/XSR EPC2..7 ⇒ ESYNC ⇒ RFI 2..7 (to the level of the EPC changed)
WSR/XSR DEPC ⇒ ESYNC ⇒ RSR/XSR DEPC
WSR/XSR DEPC ⇒ ESYNC ⇒ RFDE

WSR/XSR MEPC ⇒ (none) ⇒ RSR/XSR MEPC

WSR/XSR MEPC ⇒ (none) ⇒ RFME
WSR/XSR EPS2..7 ⇒ ESYNC ⇒ RSR/XSR EPS2..7

WSR/XSR EPS2..7 ⇒ RSYNC ⇒ RFI 2..7 (to the level of the EPS changed)
WSR/XSR EXCSAVE1 ⇒ ESYNC ⇒ RSR/XSR EXCSAVE1

WSR/XSR EXCSAVE2..7 ⇒ ESYNC ⇒ RSR/XSR EXCSAVE2..7 (to the same register)
WSR/XSR MESAVE ⇒ (none) ⇒ RSR/XSR MESAVE

Section 5.3.11 on page 231
WSR/XSR ICOUNTLEVEL ⇒ ESYNC ⇒ RSR/XSR ICOUNTLEVEL

WSR/XSR CCOMPARE0..2 ⇒ ESYNC ⇒ RSR/XSR CCOMPARE0..2
Section 5.3.12 on page 233

WSR/XSR IBREAKENABLE ⇒ ESYNC ⇒ RSR/XSR IBREAKENABLE
WSR/XSR IBREAKA0..1 ⇒ ESYNC ⇒ RSR/XSR IBREAKA0..1

WSR/XSR DBREAKC0..1 ⇒ ESYNC ⇒ RSR/XSR DBREAKC0..1

WSR/XSR DBREAKA0..1 ⇒ ESYNC ⇒ RSR/XSR DBREAKA0..1

Section 5.3.13 on page 235
WSR/XSR MISC0..3 ⇒ ESYNC ⇒ RSR/XSR MISC0..3
WSR/XSR CPENABLE ⇒ ESYNC ⇒ RSR/XSR CPENABLE

WSR/XSR CPENABLE ⇒ RSYNC ⇒ Any coprocessor instruction if its enable bit was changed

Table 9–251.  T1050 Additional SYNC Requirements
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